

 Workbook for Designing Distributed
 Control Applications using Rockwell

 Automation’s HOLOBLOC Prototyping
Software

John Fischer and Thomas O. Boucher

Working Paper No. 05-017

Introduction

 A new paradigm for creating distributed control applications is currently being
proposed under the IEC 61499 standard. This standard emphasizes formal methods
based on Unified Modeling Language and object oriented concepts. It makes a
separation between events, data, and algorithms. Algorithm execution is initiated by the
arrival of events and the algorithm uses the current values of data elements available
when the event occurs. The programming is done using function blocks, a modeling
formalism originally proposed under the standard IEC 1131-3, but extended under the
current standard. Event propagation is accomplished by connecting events among the
various function blocks.

 This standard is currently evolving and has not yet been used in actual factory
applications. The predominant standard today, IEC 1131-3, does not distinguish between
events and data. The arrival of new data (sensory input) is itself considered an event.
The continuous scan of the PLC program executes the ladder logic rungs (algorithm)
associated with the data when it arrives. In contrast, IEC 61499 is event driven and does
not necessarily scan each function block continuously.

 IEC 61499 was developed to support distributed control. Distributed control is
distinguished from purely hierarchical control by the fact that the decision processes
associated with an application are not running under a single processor. Rather, the
decision processes are divided among several processors, each having their own thread of
control. However, in order to execute the application, these processors must exchange
data and state information with each other.

 Figure 1 is illustrative of a distributed control development platform for IEC 61499.
Components on the network are intelligent devices with their own microprocessor and
network drivers. Components communicate peer-to-peer and deliver timely information
for the functioning of the overall system. Control software is configurable using a
standard library of function blocks (FB) that can be assembled in a plug-and-play fashion
to develop the control programs that will run on the individual devices. Standard
function blocks for communication among devices enable peer-to-peer communication.

 1

Project
Repository

Software
Tools

Software
Libraries

PORTABILITY

INTEROPERABILITY

Distributed intelligent devices & machines

CONFIGURABILITY

Figure 1. Components in a distributed control process

 The distributed control architecture under IEC 61499 defines key elements of a
distributed control system. They are application, device, and resource. An application is
a related set of functions that must talk to each other in order to fulfill a control task. A
device is a control unit having one or more processors. The device interfaces to the
physical I/O and also communicates with other devices on the network. A resource is
essentially a processor on which part of a distributed application will run. We are use to
thinking about single unit operations consisting of a single PLC running all the control
functions of a machine. Such a PLC usually has a single processor. The PLC, with its
I/O and network interface, is the device. The processor of the PLC is the resource. The
program on the processor is the application. Therefore, such a system is a device with a
single resource and single application.

 Figure 2 shows an example of distributed control on a single device. Here there are
three resources that share the process I/O interface and communication interface of the
device. The process I/O interface is for physical wiring of sensors and actuators. The
communication interface is the network interface of the device over which the processors
can communicate with other processors on other devices. Processors on the same device
can communicate with one another over the device back plane. Application C is
distributed across resources x, and y. Some of the execution code is handed by each
resource and the resources must talk to one another for the application to run properly.
Applications A and B extend beyond the device. They will have functions on other
devices (not shown) and will communicate with them through the communication
interface.

 2

 In the PLC world, a typical device usually has only one resource. For the time being
we will assume that model. Therefore, distributed control consists in applications that are
running on more than one PLC (device with a single resource) and communicating with
each other peer-to-peer on a network. The problem of distributing an application is
determining how the model of an application will be divided among the PLCs and how
the PLCs will talk to one another.

Communication link(s)

Resource x

Controlled process/machine

Resource zResource y

Application BApplication C

Application A

Communication interface(s)

Process interface(s)

Figure 2. A device with three resources and three applications

 The function block is the unit of programming. There are three types of function
blocks: basic function blocks, composite function blocks, and service interface function
blocks. A basic function block executes an elemental control function, such as reading a
sensor or setting the state of an actuator. Basic function blocks may be combined
together to encapsulate a higher-level control function. Such a combination is called a
composite function block. The service interface function block provides the
communication services among devices.

 Figure 3 shows a model of the components of a basic function block. The model
distinguishes between events, data, and algorithms. The upper quadrant of Figure 3
shows the event stream, which initiates the execution of the function block code. The
arrival of an event executes one or more function block algorithms. Each event input will
trigger a different execution scenario (combination of algorithms). After the execution of
the scenario, the function block will typically enable an output event. Input events come
from other function blocks and output events are sent to other function blocks in the
application.

 3

 The data flow is shown in the lower quadrant of the FB in figure 3. Data inputs are
provided either from physical devices or from other function blocks. At the time that an
input event occurs, the data input values are read and the appropriate algorithm is
executed using the current data values. Typically this results in a calculation or
validation that yields data outputs of a function block. When the output event is
triggered, the data output is made available to another function block that continues the
execution of the application.

Figure 3 Components of a Function Block

 A common example used to illustrate a function block application is PID control as
shown in figure 4. The IO_Reader is a basic function block that scans the value of an
analog sensor each time the input event RSP is triggered. The data from the sensor is
read at the data input address SD_1. The algorithm of the IO_Reader simply takes the
value at SD_1 and transfers it to RD_1. When the transfer is complete, the output event
IND is triggered, providing the input event RUN to the PID algorithm function block.
When the PID function block reads the process variable (PV) data input, it executes a
standard PID control algorithm and outputs the value of the control variable (CV).
IO_Writer is a basic function block for writing a value to an actuator. When the PID FB
executes OK, the event REQ begins the IO_Writer algorithm, which reads the value at
SD_2 and the address of the actuator (SD_1), then writes the value of the control variable
to RD_1, the actuator physically connected to the process.

 4

Figure 4 PID Controller Programmed with Function Blocks

 The above example shows the elements of the function block and an application. The
execution of the algorithm for a FB is described by a state machine, called an execution
control chart (ECC). For example, figure 5 shows the ECC for the PID function block.
The initial state is labeled “Start” and drawn with a double-sided rectangle. The
condition on the arc (RUN) is the input event that sends the FB to the state RUN_PID.
The PID algorithm is executed in that state. The PID algorithm uses the current values of
the data inputs and sets the current value of the control variable output. The action box
attached to the right of the algorithm action block is the name of the output event that is
triggered upon completion of the algorithm. The label “1” on the output arc means “true
always”, directing a transition back to the start state when the algorithm execution is
complete.

Figure 5 Execution control chart of PID_SIMPLE function block

 5

 This is a basic introduction to the IEC 61499 standard. For a more complete

 The purpose of this workbook is to provide hands-on tutorials on the use of IEC 61499

 The Function Block Developmental Kit can be found online at Holobloc’s website,

description, the reader is referred to Modeling Control Systems Using IEC 61499 by
Robert Lewis (The Institution of Electrical Engineers, London: 2001).

in designing function blocks and distributed applications. The creation of function blocks
and the use of standard function blocks have been facilitated by Rockwell Automation
through the Holobloc IEC 61499 prototyping software. The use of this software in
designing function blocks will be described in the lessons of this workbook.

http://www.holobloc.com. Under the link, Function Block Developmental Kit (FBDK),
the software can be downloaded for free, non-commercial use. After clicking on the link,
you will be at a web page titled “Getting Started.” The instructions on downloading and
setting up the FBDK are listed on this web page. Before downloading the FBDK, please
read the Terms and Conditions of Use section of the page before downloading the
software. Once you click on the statement, “I have read and agree to the following Terms
and Conditions of Use,” you will download a zip file. This zip file contains the FBDK
executable file and other files for use with the FDBK (i.e. function blocks). Return to the
“Getting Started” web page and follow the remaining steps for extracting the files from
the zip file and setting those files up on your computer. If you do not have Java
Developer Kit 5.0, or an older Java Developer Kit version; it is highly recommended that
you download and install the latest version. Without it, it will not be possible to create
your own function blocks. Once those steps are completed, you are ready to proceed
through the following lessons to learn and use the FBDK.

 6

http://www.holobloc.com/

TABLE OF CONTENTS

LESSON PAGE
IEC Tutorial 1: Introduction to IEC 61499 8
IEC Tutorial 2: Composite Function Block Tutorial 26
IEC Tutorial 3: User-Defined Basic Function Block 37
IEC Tutorial 4: Publish and Subscribe Function Blocks 47
IEC Tutorial 5: Client and Server Function Blocks 55
IEC Tutorial 6: Adding Java Code to a Function Block 62
IEC Tutorial 7: Designing Database Query Function Blocks 74

 7

IEC TUTORIAL 1: INTRODUCTION TO IEC 61499

1.1 Introduction

The IEC 61499 is an evolving standard that uses function blocks in the distribution of
control in industrial processes. This tutorial will go through the basics of using function
blocks as well as explaining the use of the software for developing and testing control
programs.

SITUATION: There is a programmable logic controller that has switches as inputs and
lights as outputs. In this situation, there are two switches (switch 3 and switch 2) and two
lights (light 1 and light 2). The system must meet the following requirements.

1) Both lights will be on if I:1/3 (switch 3) is turned on and I:1/2 (switch 2) is turned
off.

2) If I:1/3 and I:1/2 are both turned on, then O:2/1 (light 1) will be on and O:2/2
(light 2) will be off.

3) If I:1/3 is turned off, then both lights will be off, regardless of whether I:1/2 is on
or off.

The ladder logic for this PLC is as follows:

I:
Swtc

0000

e
e
e
e
e
e
e
e
e
e
e
e

1

3
1746-I*16

i h 3

O:2

1
1746-O*16

Light 1

I:1

2

Switch 2

O:2

2
1746-O*16

Light 2

Figure 1.1 Ladder Logic for Tutorial 1

In Boolean logic, the PLC follows these equations.

Light 1 = Switch 3

Light 2 = Switch 3 Switch 2•

1.2 Steps in Using the Holobloc FBDK Software

Now that the logic of the system is realized, programming it in IEC 61499 can now
begin. First we must launch the function block editor. Using Windows Explorer, go to
the directory that contains the function block editor: C:\fbdk. The right side of the screen
should look like Fig. 1.2 in which the editor is highlighted. Double click on the editor.

 8

Figure 1.2 Function Block Editor

Step 1: Creating a New System

Once the editor is launched, you will see a screen that looks like Fig. 1.3a. The first step
is to begin a new system configuration. Go the menu bar and click on File -> New ->
System. The screen should be similar to Fig. 1.3b.

Figure 1.3a Default Screen

 9

Figure 1.3b New System Screen

Step 2: Properties.

On the left side of the screen, there is a list. This list represents the default system
configuration. The first entry is titled Properties. Under the Properties listing, there are
three entries: Name/Comment, Identification, and Versions. The first entry,
Name/Comment, gives the new system a name and adds any comments about it. The
second entry, Identification, is used to add any extra information about the system (i.e.
the standard used). The third entry, Versions, is used to add information on the system’s
author and the system version history. By double clicking on each of those entries,
windows will pop up on screen to allow you to enter the proper information. First,
double click on Name/Comment entry to bring up the window at the bottom screen as
shown in Figure 1.4a.

Figure 1.4a Properties – Name/Comment Window

By inserting text into the Name field, the system can be given a name along with user
comments. The default name is System. Give the new system a name. Be sure not to use
any spaces or special characters. For the purposes of this tutorial, it will be named

 10

Tutorial1. This name will not only be the name of the system but also the name of the file
that will be saved. When the information is entered, click OK and the system will now
have a new name.

Once the system has a new name, double click on the third entry, Versions. Here you
will provide the name of the organization programming the system, the version number,
the date, any comments, and the author’s name can be added. If there are any other
entries there, you can delete them by clicking on the row to highlight it, right click on the
row, and selecting Cut. You can add an entry by right clicking within the window and
selecting New and clicking on each field to insert the desired information. Click OK
when finished so the information can be saved. When you are finished, the Versions tab
will look something like Fig. 1.4b.

Figure 1.4b Example Version Settings

Double clicking on the entry titled Identification will open up another window allowing
you to enter information. However, for the purposes of this tutorial, nothing needs to be
added there. The system now has a name as well as information on the system’s version,
the system’s author, the date of the version, and the organization the system is for.

Step 3: Saving & Loading Systems.

It is important to constantly save the system after entering important information. Saving
a system allows you to avoid losing any progress you have made on your system. To
save a system, go to the menu bar, click on File -> Save As -> XML. All systems are
saved as XML files. For the purposes of this tutorial, it is recommended to save these
XML files under the file path C:\fbdk\src\student. If you want to separate your files from
the other files already in that directory, you can create another subdirectory within
student. Please save the Tutorial1 system. Figure 1.5a shows what the Save As screen
will look like.

 11

Figure 1.5a Save System as XML Screen

To load a system, go to the menu bar click on File -> Open -> XML. A load XML file
screen will appear. When set to IEC 61499 XML Files, the Files of Type drop down
menu displays all of the XML files that can be loaded. Figure 1.5b shows the screen that
appears to load up a XML file as well as the Tutorial1 system file that was just saved.

Figure 1.5b Open XML File Screen

 12

Step 4: Defining Devices.

The next entry on the list to the left, below Properties, is titled APP1. More details on
this entry will come later. The following entry is the system name, as defined in under
the Name/Comments entry. Click on this name and the workspace will display the
devices in the system. There should be a block named DEV1 with the name
DeviceType. All systems are made up of devices. Devices are made up of one or more
independent processors with their own memory, I/O, and thread of control. These
independent processor units are called resources. A PLC with one processor is roughly
equivalent to a device with one resource. In this case the device is shown with two
resources.

By right clicking in the workspace, more devices can be added by selecting New ->
Device. For this tutorial, only one device is needed; thus, the current device, DEV1,
needs to be edited. Right click on the name at the top of the block, DEV1, and select Edit.
As Figure 1.6 shows, a window pops up with a set of text fields and a drop down menu.
The current type of device is DeviceType, which must be changed; the program will not
run as a DeviceType. Click on the drop down menu titled Type and select
FRAME_DEVICE to change the type to FRAME_DEVICE. This type will make the
program run in a window. When finished, click OK and you will see the changes made
to the device. Incidentally, to delete a device, you can right click on the name of the
device and select Delete. Notice how the block changes, there are additional listings
within it now. You can right click on the parameters within the block titled BOUNDS
and GRID to configure the device. Select Connect to give them base values of [0,0,0,0]
and [0,0].

Figure 1.6 Programming Devices

 13

These two device parameters adjust program window display can be defined. The first
listing, BOUNDS, has four values. The first two, x and y, defines where the window will
appear with respect to the top left corner of the screen when the program is run. The last
two, width and height, defines the initial size of the window. To change the values after
connecting the parameter with a base value, simply double click on it. A window will
pop up allowing you to edit the parameter. For this tutorial, set the BOUNDS parameter
to [100,100,150,200], but feel free to change them. Click OK to finish and update the
parameter. The second listing, GRID, determines the grid size within this window. For
this tutorial, and in general, [1,1] will suffice. Again, double click on the base value to
have a window pop up to edit the parameters. When finished, click OK, and the device
parameter will be updated. The system configuration now has a defined window and
layout for when the program is run. Now the resources within device can be defined.

Step 5: Defining Resources

Before developing this system, click on DEV1 on the left side of the screen. Figure 1.7
shows that there is one resource currently within the previously defined DEV1, named
RES2. RES2 is a resource. Devices are made up of resources, which are used to contain
and execute the function blocks necessary for the program. Right click on the resource
block’s name, RES2, select Edit, and a window will pop up allowing you to edit the name
and resource type of the resource. This is also shown in Figure 1.7.

Figure 1.7 Programming Resources

 14

For this tutorial, only one resource is needed. You can choose to give it a new name,
such as RES1; but it’s not required. Click on the drop down menu named Type and
select PANEL_RESOURCE. Similar to defining the device as a FRAME_DEVICE, the
resource must have this type in order for the program to run. Click OK when finished
and the resource has been edited. Deleting resources is similar to deleting devices,
simply right click on the name of the resource and select Delete. To add resources, right
click on the workspace, and select New -> Resource. Now that the device and resource
for this tutorial is defined, the system can now be programmed. Save your system before
doing so.

Step 6: Adding Function Blocks

The next step is to program the application using function blocks. There are three types
of function blocks: 1) basic function blocks, 2) composite function blocks, and 3) service
interface function blocks. In this exercise we will use only basic function blocks. Basic
function blocks represent elemental functions, such as logical and mathematical
operations. Many basic function blocks are defined as part of the IEC 61499 standard.
Composite function blocks are constructed by combining basic function blocks and/or
user-defined function blocks in a sequence to perform higher-level control operations.
Service interface function blocks define communication among resources and devices.
The programming of basic function blocks and composite function blocks will be
described in a later tutorial.

The application, titled APP1, is where the programming will take place; it is where the
source code will be written. Click on the entry titled APP1 and the workspace will be
completely empty. When starting a new system, there will be one application entry and it
will be empty. This tutorial will program the system described in Figure 1.1.

To start programming the system described in Figure 1.1, try adding a function block for
one of the input switches of the PLC program. According to the situation, the switch is
either on or off; so the function block must represent a Boolean input. Such a standard
input block comes with the software. To add a new function block, right click on the
empty workspace, select New -> FB. Click on the button next to the pull down menu
named Type to add a new function block type. Any blocks previously called up while
the program has been used will be listed in the pull down menu named Type. Clicking on
the button next to the pull down menu allows searching through the directories for the
desired block. For this example, the necessary function block type is a Boolean input. A
screen will pop up to load a new function block type. This is similar to loading a system.
The function block type needed can be found through this path: fbdk-> src -> hmi. The
file for this block is IN_BOOL.fbt. Click on it and it will not only be the type for that
block, but it will now be in that pull down menu. Now this new function block needs a
name. For the name of a function block, be sure not to use any spaces (use underscores
instead) or special characters. For this tutorial, one suggestion would be to call it
INPUT_3. Give it that name or any other name now. Click OK and there will now be a
Boolean input function block named INPUT_3 in the workspace, as shown in Figure 1.8.

 15

Figure 1.8 Workspace After Adding an IN_BOOL Function Block

To move a function block in the workspace, simply click on the name of the function
block and drag it to the desired location. Editing and deleting a function block can be
done by right clicking on the function block’s name and selecting the proper choice in the
resulting menu.

EXERCISE: In this situation, another Boolean input function block is needed as well as
two Boolean output function blocks (lights are either on or off; thus, they are Boolean
outputs). The file name for the Boolean output function block is OUT_BOOL.fbt and it
is in the same directory as the IN_BOOL.fbt file. According to the logic of the problem,
AND and NOT functions are involved, so function blocks for them are needed. Insert
these five additional function blocks on your own. The function blocks for AND and
NOT functions are in the directory fbdk -> src -> math, the files are FB_AND.fbt and
FB_NOT.fbt respectively. You may need to move the blocks to see them all clearly.
This can be done by clicking and dragging them in the workspace. Save the system when
finished

Figure 1.9 shows all of the blocks needed for this system.

 16

Figure 1.9 Function Blocks Required for System

Step 7: Events

Function blocks are controlled by events. Events are shown at the top, or head, of the
block. Think of events as pulses. When a function block executes an event, it sends out a
pulse to any function block connected to the output of that event. Whenever an event
reaches a function block, data that corresponds with the arrival of that event gets read, the
algorithm within the function block is executed based on the type of event, and an event
is outputted from that function block to the next one. Click on APP1 and notice in the
workspace that none of the function block events are connected with any other function
block events.

Connecting function block events is simply done by holding the Alt key on the keyboard,
clicking on the event of one function block, and dragging the cursor to a second event on
another function block. A connection will appear between the events in the workspace.
For example, an event is necessary between the IND event in INPUT_3 and the REQ
event in NOT. IND stands for indication; whenever there is a change in INPUT_3
(switch is turned on or off), this event will occur and go to its destination. REQ stands
for request; whenever an event comes to REQ, the algorithm associated with it is
activated. What is needed is that whenever there is a change in INPUT_3, NOT should
be activated and executes its algorithm. Hold the Alt key, click on the IND event on the
INPUT_3 function block, and then drag the cursor to the REQ event on the NOT function
block. A line will appear connecting the two events, as seen in Figure 1.10.

 17

Figure 1.10 Workspace After Connecting Two Function Block Events

Event connections are always displayed as green lines. Deleting a connection between
events is done by clicking on the connection line itself. The connection will turn red; it
can then be deleted by holding the Alt key and pressing the Delete key or by right
clicking on the connection and clicking on Delete.

It should be noted that both input and output function blocks have additional events
named INIT and INITO. These events are called initialization events; they are used in
the initialization of the program and ensure that the blocks will be active and in their
initial states when the program is started. Most function blocks have these events, so it
is recommended that those events are always connected.

EXERCISE: Connect the remaining necessary events. Use Figure 1.11 as your guide.
Connect the INIT and INITO events by starting with the INITO event in INPUT_3 with
the INIT event in INPUT_2. Connect the INITO event in INPUT_2 with the INIT event
of OUTPUT_1; and then connect the INITO event in OUTPUT_1 with the INIT event of
OUTPUT_2. Connect the IND event in INPUT_3 with the REQ event for OUTPUT_1,
as well. Connect the IND event in INPUT_2 with the REQ event for NOT. Connect the
CNF event in NOT with the REQ event in AND. Connect the CNF event in AND with
the REQ event in OUTPUT_2. Ignore the INIT event for INPUT_3 and INITO event for
OUTPUT_2. Also ignore the REQ and CNF events for the two input blocks as well as
the CNF events for the two output blocks. The final result should be similar to Figure
1.11.

 18

Figure 1.11 Workspace After All Event Connections Are Made

If the connections get too visibly confusing, right click on the main screen and select
Redraw -> Connections. That should make the diagram clearer.

Step 8: Connecting Data

The data in a function block is represented in the bottom, or body, of the function block.
Data gets read when an event arrives, is processed through an algorithm, and a result is
outputted. Like events, data needs to be connected between function blocks. For this
tutorial, the data outputted from the two input blocks need to be used with the logic to
control the final output. Connecting data is done with the same method used for
connecting events.

According to the logic, OUTPUT_1 is only affected by INPUT_3. Therefore, whatever
is outputted from INPUT_3 should go into OUTPUT_1. Connect the OUT in INPUT_3
to the IN in OUTPUT_1 using the same method to connect events. Hold the Alt key,
click on OUT in INPUT_3, and drag the cursor to IN in OUTPUT_1. That part of the
logic is now successfully implemented in the program, as shown in Figure 1.12. Data
connections are always displayed as blue lines, and can be deleted in the same way as
event connections.

 19

Figure 1.12 Workspace After First Data Connection

EXERCISE: Make all of the necessary data connections to complete the logic for the rest
of the program. Remember that data, like events, can go to multiple destinations. When
finished, all the necessary data connections will be made and the system should look
similar to Figure 1.13.

Figure 1.13 Workspace with Event and Data Connections

 20

Step 9: Assigning Data

While all the data connections are made, the system is still not complete. There are
multiple data inputs that have nothing assigned to it. While events need only to be
connected to other events, some data inputs require their own values. For example, both
the input and output function blocks have a data input called QI. QI activates the block
when it is defined as 1 so that the function block will run when the program is executed.
By setting QI=0, the user prevents the function block from executing when the program
is running. This is similar to commenting out a line of code in a program. Therefore, all
of the QIs should be defined as 1. To do this, right click on the QI data input for
INPUT_3, and select Connect. There should be a display similar to the one shown in
Figure 1.14.

Figure 1.14 Assigning A Data Input

Select 1 for QI and the data input will display a 1 for that data input. To edit this value,
double click on the value of the data input, and a window will pop up allowing the
parameter to be edited. Repeat this process for the other data inputs titled QI in the
system. Be careful not to assign more than one source to one destination, otherwise there
will be an error.

Other data inputs can be defined by right clicking on the data input name on the function
block, select Connect, and the base value that appears. Editing a data input value is done
the same way as editing a device parameter. Double click on the data input value, a
window will pop up, and the parameter can be edited. If the base value is “”, that means
the data input is a string; insert text in between the quotation marks. Some function
blocks have specific data inputs, such as the OUT_BOOL function block. The data
inputs C0 and C1 refer to color when the output is a 0 or a 1. Therefore, the value should
correspond to a red-green-blue value (i.e. [0,0,0] is black, [255,0,0] is red, etc.).

EXERCISE: Connect and assign values to the data inputs for the remaining input and
output function blocks. Give labels to each function block, so when the program is run
there will be a name assigned to that input or output. For the input function blocks, set
IN to 0, since the switches will be off when the program first starts. For the output

 21

function blocks, choose a different color each for C0 (when the light is off) and C1 (when
the light is on).

Once finished with this exercise, the program should look similar to Figure 1.15. Do not
worry about QO, there is no use for that data output in this situation. The code in
program is finished, and the logic of the situation is realized.

Figure 1.15 Completed Data and Event Configuration

Step 10: Mapping and Running the Program

Check for any errors made in the program. Any errors that do occur will appear in a text
box at the top of the screen. If there are no errors, this program can now be mapped to
the resource that was previously defined. Function blocks have to be downloaded
(mapped) to the resource on which they will run. To map a function block, right click on
the name of function block and select Map. The following menu will ask where to map
the function block. While it is possible to map it to the device directly when there is only
one resource on the device, which may cause errors in the program. Therefore, map it to
DEV1.RES1 as shown in Figure 1.16.

 22

Figure 1.16 Mapping the INPUT_3 Function Blocks to RES1

Click on RES1 on the list left of the workspace now. The block should appear there just
as it was in APP1. The only change that may be made is to move the block, but that is a
minor change.

EXERCISE: Map the other blocks in APP1 to the resource RES1 in device DEV1.

Click on RES1 and notice that all of the blocks in APP1 are in RES1 with the same
connections and data assignments. Also notice that there is an E_RESTART block
present. This block is in all resources, it controls the starting and stopping of the
program. The E_RESTART block only has three events: COLD, WARM, STOP. The
COLD event initially starts the program, similar to turning on a computer after it has been
off. The WARM event starts the program over after it has already been started, similar to
restarting a computer. The STOP event ends the running of the program, similar to
turning a computer off. For this program, only the COLD event is needed; connect that
event with the INIT event of the INPUT_3 block. Once that is complete, the resource
should look similar to Figure 1.17. Save the system now, just before running it.

 23

Figure 1.17 System Downloaded to a Resource

To run a system, go to the menu bar and click on Run -> Launch -> the system name,
Tutorial1. For this system, the window shown in Figure 1.18 should appear at the
defined coordinates with the defined dimensions from Step 3.

Figure 1.18 Device Running the Program

The two switches, being Boolean inputs, appear as checkboxes. The two lights, being
Boolean outputs, appear as lights. Check the boxes in all possible combinations to see if
the program follows the necessary logic and works correctly. Figure 1.19 shows what
should happen if all 10 steps were followed properly.

 24

Figure 1.19 Various Combinations Testing the Program

If the program does not run correctly, there is something wrong with the program. Make
any changes to correct these errors in APP1, but the program will not run with these
changes until the original program is deleted from the resource and the updated program
is mapped again to that resource. This ends the tutorial on using function blocks in the
IEC 61499 standard.

1.3 Summary

In summary, this tutorial has shown the following sequential steps on basic use of the
IEC software. To design a system on this software:

1. Configure the new system by adding properties.
2. Define devices by their type (usually FRAME_DEVICE) and their bounds and

grid parameters.
3. Define resources in the device(s) and their type (usually PANEL_RESOURCE).
4. Add function blocks that will be used.
5. Connect the events of the function blocks
6. Connect the data inputs and outputs of the function blocks.
7. Define the necessary data inputs for certain function blocks.
8. Map the function blocks to the proper resource(s) in the device(s).
9. Connect the E_RESTART function block to the other function blocks in the

resource(s).
10. Click on Run at the menu bar, select Launch and then select the system’s name to

launch the program.

Do not forget to save the system by clicking File -> Save As -> XML.

 25

IEC TUTORIAL 2: COMPOSITE FUNCTION BLOCK TUTORIAL

2.1 Introduction

In the IEC 61499 standard, there are three main types of function blocks: 1) basic
function blocks, 2) composite function blocks, and 3) service interface function blocks.
Basic function blocks describe elemental logical and mathematical operations. They
consist of events; data; algorithms to process data; and an execution control chart to
control what algorithms are used based on what events are inputted into the block.
Composite function blocks consist of multiple basic function blocks, but do not have an
execution control chart. These blocks are useful for large programs, since many
functions can be combined into a single block.

SITUATION: Create a composite function block called ON_OFF_OC that will take two
Boolean inputs and yield one Boolean output. The notation used to name the composite
function block type is user determined. Here we indicate that it is for on/off operation
and consists of one open (O) and one closed (C) contact. The ladder logic for this
function block is as follows in Figure 2.1a.

Figure 2.1a Ladder Logic for Composite Function Block

Before we begin to create a composite function block, let us look at how the logic of
Figure 2.1a would be implemented using basic function blocks. This is shown in Figure
2.1b. The start and stop switches and the output lamp function blocks are used to emulate
inputs and outputs. The control logic is given by the FB_NOT and FB_AND function
blocks. The logic is as follows:

Start Stop Out• =

Therefore, a composite function block to execute this logic is composed of one NOT
function block and one AND function block. This is the composite function block,
ON_OFF_OC, which we will create in this tutorial.

 26

Figure 2.1b Function Block Equivalent of Figure 2.1a

2.2 Steps in Creating a Composite Function Block

Step 1: Creating a New Composite Function Block

Go to the menu bar, click on File -> New -> FB Type -> Composite to create a new
Composite Function Block. The composite function block Composite will then appear,
already with input data, output data, input events, and output events. The new window
should appear like Figure 2.2.

 27

Figure 2.2 Default New Composite Function Block

Step 2: Setting the Properties

On the left side of the screen, there is a list of entries for this new composite function
block. The first entry is called Properties, and it has five entries below it. Notice that the
first three entries listed are exactly the same for the properties of a system:
Name/Comments, Identification, and Versions. For now, give this composite function
block the name ON_OFF_OC and input the version information in the same manner done
in IEC Tutorial 1. To do that, simply double click on the desired entry and input the
necessary information. Click OK on the window when finished with each.

Figure 2.3 Properties - Compiler Info Window

There is fourth entry called Compiler Info with an entry listed below called Compilers,
which is extremely important. This composite function block can not be used unless it is
ultimately compiled. Therefore, a compiler must be defined. For this tutorial, this

 28

composite function block will be made up of existing basic function blocks. Therefore,
the file-path to these basic function blocks also must be defined for the compiler. This
information must be typed into the header field. First, double click on the entry called
Compiler Info and a window will pop up with text fields for the compiler header and
class definition. For this tutorial, only the header needs a definition. The compiler is
defined as (without the quotes) “package fb.rt.student;”. The function blocks needed are
in the math folder in the src directory. To define that, put in the header (without the
quotes) “import fb.rt.math.*;”. Any function blocks from that directory can now be used.
The field should be like Figure 2.3. Now click on OK. The Compiler Info will be
updated. If it is not updated, simply look at the XML code at the bottom of the screen
for the entry that begins with “<Compiler Info”. The information for the compiler can be
made there as well; just be sure to parse the new XML code by clicking on the button
with a circle of arrows (or Alt+S). Now click on the entry called Compilers. A window
will pop up with no listings in it. Right click in the empty space and select New to add a
compiler. It should look like Figure 2.4.

Figure 2.4 Properties - Compiler Window

Step 3: Interface – Events & Data Points

The next entry on the list to the left of the screen after the entries under Properties is
called Interface. Click on Interface and this workspace will display the composite
function block itself. This is where events, data inputs, and data outputs can be created,
deleted, and modified. The default new composite function block already has four
events: INIT and INITO events for initialization, a REQ event for requesting of
information, and a CNF event for confirmation. In general, there should always be INIT
and INITO events for function blocks that retain internal information in order to make
sure the function block does not use data from previous program runs. However, this
function block only has data coming in from other function blocks; thus, the INIT and
INITO events are not necessary. The reader can confirm this by looking at Figure 2.1b.
The FB_NOT and FB_AND function blocks do not require an INIT event. Remove the
INIT and INITO events by right clicking on each event name and select Delete. This
composite function block will be requesting events for data, so there does not need to be
any change to REQ. In addition, data from the composite function block will be sent
along with requesting events, so there needs to be a confirmation event that the data is
received. As a result, there is no need to change CNF.

 29

However, there is only one data input and one data output currently for this default
function block. QI is the input and QO is the output. Generally, they are important for
some function blocks to actually function in a program; but in this case they are not
necessary. Look at Figure 2.1b to confirm that they are not required for the FB_NOT and
FB_AND function blocks. Therefore, these data inputs and outputs must be deleted.
Right click on each of the names of the data input and data output and select Delete to
delete them. The composite function should now look like Figure 2.5 below.

Figure 2.5 Composite Function Block with Input and Output Events

For this ON_OFF_OC function block, there needs to be two data inputs and one data
output. Creating data inputs and data outputs are done by simply right clicking within the
composite function block and click on New. Under New, there are two options: Events
and Variable. Selecting Events allows new input and output events to be made; where as
Variable is for creating new data inputs and data outputs. Click on Variable and click on
Input to create a new data input. A window will pop up to define the name and data type
for this input. For this tutorial, name this new data input IN1O-this will represent the
open contact from Figure 2.1a. Click on Type and a pull down menu will appear to make
the input a particular type. In this instance, both data inputs should be Boolean, so select
BOOL to make IN1O a Boolean data input. Click OK when finished and the new data
input should appear on the composite function block. Repeat this process for a data
output named IN2C. This data input will represent the closed contact from Figure 2.1a to
complete the necessary data inputs for the composite function block. When finished with
the defining the data input, click on OK to see the updated results.

EXERCISE: Give the composite function block a single data output called OUT.
Remember, the inputs for the composite function block and the basic function blocks that
will be used are Boolean, so the output should also be Boolean.

After finishing the exercise, the ON_OFF_OC composite function block should look like
Figure 2.6.

Figure 2.6 Composite Function Block with Data Inputs and an Data Output

You may have the same information but not organized the same way. To move events
and data within a block, right click on the name of the event or data in the composite
function block and select either Move Up or Move Down to move it up or down.

 30

Step 4: Interface – Data Connections

While the composite function block ON_OFF_OC now has events and data inputs, the
two are separate from each other. When an event is read into any function block, the
data that it is associated with is read before it executes a particular algorithm. Therefore,
data connections are necessary. When events or data are deleted, the data connections are
automatically deleted. However, they must be added separately after creating new events
and data. Since, there is only one event going into the function block, both data inputs
must be connected to that event. To do this, hold the Alt key and click on the word
EVENT associated with the event you want to make a connection for. The cursor will
change and by dragging it to the desired data input or output name (or the data type of the
data input or output name), a connection between an event and data will be made. If the
same procedure is done on the same connection, the connection will be deleted.

There is only one input event for this composite function block; thus both data inputs
should be connected to this single input event. Hold down the Alt key and click on
EVENT next to the REQ event. Drag the cursor onto the word BOOL next to IN1O and
that data input will then be connected to the REQ event. Whenever an event comes to
REQ, IN1O will then be read and go through the composite function block. By using the
same process, connect the REQ event to the IN2C data input and the CNF event to the
OUT data output. When finished, the composite function block should look like Figure
2.7.

Figure 2.7 Composite Function Block with Data Connected to Events

Now that the data is connected to the events for the composite function block, all that
needs to be done is to put basic function blocks in the composite function block for this
function block to perform the desired operation.

Step 5: Filling the Composite Function Block

While there is input and output data, as well as input and output events, currently nothing
is being done with the information coming to or leaving the composite function block. In
order to have the composite function block to have any actual use, there must be function
blocks (basic or other composite function blocks) within it. On the left side of the
screen, the last entry in the list is the name of the block, ON_OFF_OC. Click on it and
the workspace will show what is currently in the composite function block. Right now,
only a function block named E_DELAY should be in the workspace. This workspace is
exactly like the one that appears when one clicks on APP or a resource entry in a system;
this is where function blocks, data connections, and event connections take place.

 31

For this ON_OFF_OC function block, the E_DELAY function block is not necessary, so
delete it. Add a FB_AND and a FB_NOT function block and then click on Update. If
you click on Update after removing the E_DELAY function block but before adding any
others, the listing on the side of the screen for this window disappears. This is done
exactly as it was done under Step 6 in IEC Tutorial 1. Remember that both blocks can be
found on the following directory path: fbdk->src->math. When finished, the screen
should be like Figure 2.8.

Figure 2.8 Basic Function Blocks for ON_OFF_OC Composite Function Block

EXERCISE: Connect these two blocks together with one data connection and one event
connection. Be sure to follow the ladder logic shown in Figure 2.1a.

When finished with the exercise, the two blocks should be connected as shown in Figure
2.9.

Figure 2.9 Basic Function Blocks with Connections for ON_OFF_OC

 32

Step 6: Completing the Connections.

Now the necessary function blocks are in the ON_OFF_OC composite function block.
The two are connected in the right order (NOT then AND function). However, there is
still the issue with the data and events defined in the composite function block.
Currently, the NOT and AND function blocks have no data connected to its inputs; the
AND function block has no destination for its CNF event; and the NOT function block
has no source for its REQ event. Further connections must be made so the data and
events coming in and out of the composite function block will go through these function
blocks inside of it.

Start with the events. The composite function block, ON_OFF_OC, has an event input
called REQ to receive events and an event output CNF to output them. Since the
FB_NOT function block should be accessed first, the REQ event from the composite
function block should be connected with the REQ event of the function block named
NOT. Right click on the REQ event on the NOT function block, click on Connect, and
select REQ. By doing this, an event coming into REQ of the ON_OFF_OC composite
function block will go directly to REQ of the FB_NOT function block within it. This
connection is set. There needs to be a connection to the CNF event of the composite
function block to output an event. Since the AND function block is the last function
block to be used, the CNF event of that function block should be connected with to the
CNF event of the composite function block. Right click on the CNF event on the AND
function block, click on Connect, and select CNF. An event leaving through the CNF
event of the AND function block will be the CNF event of ON_OFF_OC. The function
block system within ON_OFF_OC should look like the system shown in Figure 2.10,

Figure 2.10 Events of Function Blocks Connected to the Events of ON_OFF_OC

The data inputted to and outputted from the ON_OFF_OC composite function block must
also be connected to the basic function blocks. To start, connect IN2C of the
ON_OFF_OC function block to the FB_NOT function block. IN2C represents a closed
contact, so it needs to go through the IN data input of the NOT function block. Right
click on the IN data input name, click on Connect, and select IN2C. The IN2C data input
of ON_OFF_OC is now connected to the IN data input of NOT.

 33

EXERCISE: Connect the IN1O data input of ON_OFF_OC to the IN1 data input of the
AND function block and the OUT data output of the AND function block to the OUT
data output of the ON_OFF_OC function block.

Once finished with that exercise, Figure 2.11 shows what should be within the composite
function block ON_OFF_OC.

Figure 2.11 Linking Basic Function Block Data to Composite Function Block Data

Step 7: Compiling

The events, data, and logic of the ON_OFF_OC composite function block are now
complete. However, ON_OFF_OC can not be used yet. The final step is to compile this
function block so it can be used in other programs. Earlier, the compiler was defined as
“package fb.rt.student;”. This is where the Java compiler within the program will check
for this file and compile it. First, save this ON_OFF_OC composite function block as a
Java file. This can be done by going to the menu bar and clicking on the following path:
File -> Save As -> Java. Make absolutely certain the file is saved in the already defined
directory. If, for some reason, the program does not automatically take you there, it can
be found by this pathway: fbdk -> lib -> fb -> rt -> student. The name of the function
block will be saved with the extension .java. The file will automatically be compiled. A
window will appear, shown in Figure 2.12, if it is successful.

 34

Figure 2.12 Java Successfully Compiled

As it says in the window for Figure 2.12, before using this composite function block, the
program used for making this composite function block must be closed. Save the
ON_OFF_OC composite function block as an XML so it has the proper .fbt extension. It
is suggested that you save this function block in a new directory under the src folder.
Now it can be used like any other function block in any other system. For example,
establish a directory with your name on it where you will save your function blocks.
After following this tutorial, you have successfully created a composite function block.

EXERCISE: Implement this ON_OFF_OC composite function block in the following
system in Figure 2.13. In this example we have given the name “Control” to this instance
of the composite function block of type ON_OFF_OC.

Figure 2.13 Example Using Basic Function Blocks

 35

SOLUTION: The proper implementation of this function block system is in Figure 2.14.

Figure 2.14 Example Using ON_OFF_OC Composite Function Block

2.3 Summary

This tutorial has shown the following sequential steps for creating and using a composite
function block. To create a composite function block:

1. Define the properties of the composite function block.
2. Define the compiler information, where the compiler will look for the file, and

the file path of other function blocks used in the composite function block.
3. Define the interface of the composite function blocks: events, data inputs, and

data outputs.
4. Connect data inputs and outputs with corresponding events.
5. Insert all of the function blocks the composite function block will use and

make any data and event connections within those function blocks.
6. Connect events defined in the interface to the proper function blocks inside

the composite function block.
7. Connect data inputs and outputs defined in the interface to the proper function

blocks inside the composite function block.
8. Save the function block as a Java file in the same directory defined for the

compiler. The Java file will automatically be compiled.
9. If the file was successfully compiled, save the function block as an XML file.
10. Close the editing of the composite function block and add it to a system like

any other function block.

 36

IEC TUTORIAL 3: USER-DEFINED BASIC FUNCTION BLOCK

3.1 Introduction

In the IEC 61499 standard, there are two main types of function blocks: basic and
composite function blocks. In addition to receiving and sending events and data, basic
function blocks have algorithms to process the data received and execution control charts
to control which algorithms are used depending on the event received. Composite
function blocks are made up of combinations of basic function blocks.

There are several basic function block types that are part of the IEC 61499 standard, such
as logical and mathematical function blocks. In addition, users can create their own basic
function blocks for particular functions. To do so, it is necessary to define the execution
control chart and the algorithms in addition to the events and data it will use. In this
exercise we will create a user-defined basic function block.

SITUATION: Create a basic function block called ON_OFF_OC_B that implements the
following ladder logic shown in Figure 3.1.

Figure 3.1 Ladder Logic for Basic Function Block

3.2 Steps in Creating a Basic Function Block

Step 1: Creating a New Basic Function Block

Go to the menu bar and click on File -> New -> FB Type -> Basic FB to create a new
Basic Function Block. The basic function block NEWBASICFB will appear, already
with input data, output data, input events, and output events. The new window should
look like Figure 3.2.

 37

Figure 3.2 Default Basic Function Block

Step 2: Setting the Properties

On the left side of the screen, there is a list of entries related to this new basic function
block. The first entry is called Properties, with five entries below it. Notice that the first
three entries under Properties are exactly the same for the properties of a system:
Name/Comment, Identification, and Versions. For now, give this basic function block
the name ON_OFF_OC_B (Note: This extra _B is needed if you followed the composite
function block tutorial first and you do not want to overwrite that function block) and
input the version information. Click OK when finished.

Figure 3.3 Properties – Compiler Info Window

 38

The remaining two entries are called Compiler Info and Compilers that are extremely
important. This basic function block can not be used unless it is ultimately compiled.
Therefore, like with a composite function block, a compiler must be defined. This
information must be typed into the header field. The compiler is defined as (and without
the quotes) “package fb.rt.student;”. The field should be like Figure 3.3. No other
directory paths need to be imported since a basic function block does not use other
function blocks. Click OK to update the compiler information. Again, if the compiler
information is not updated, modify the header in the XML file at the bottom of the screen
and click on the circle of arrows to parse the code (or hit Alt+S). Double click on the
Compilers entry and right click on the empty space and select New. This will add a
compiler for the function block; click OK to finish adding the compiler.

Step 3: Interface – Events and Data

The next entry below Properties on the left side of the screen is called Interface. Click
on that and the workspace will show the basic function block. This window is where
event and data inputs and outputs can be created, deleted, and modified. The default new
basic function block already has two input events: an INIT event for initialization and a
REQ event for requesting of information. In general, there should always be an INIT
event to make sure the function block does not use data that has been stored internally
from previous running of the program. However, this function block only has data
coming in from other blocks; an INIT event is not necessary. This basic function block
will be receiving information, so there does not need to be any change to REQ. The
basic function block has two output events: an INITO event for an output of an
initialization and a CNF event for confirmation. Since there is no INIT event, there
should be no INITO event. Data is being requested, so there needs to be a confirmation
event, CNF, that the data is received.

However, there are only one data input and one data output currently for this function
block. QI is the input and QO is the output. Generally, they are important for some
function blocks to actually function in a program; but in this case they are not necessary.
Right click on the QI data input and select Delete to delete the data input, and do the
same for the QO data output. This will delete both the data as well as the data connection
between the event and the data. It is not possible to delete any events that are in the
execution control chart. This will be explained later. The basic function block should
now look like Figure 3.4.

Figure 3.4 Basic Function Block with Input and Output Events

For the ON_OFF_OC_B function block, there needs to be two data inputs and one data
output. Creating data inputs and data outputs is done by right clicking on the function

 39

block, clicking on New, and clicking on Variable. Select input to create a new data input.
A window will pop up to name and define the data type for the new data input. For this
tutorial, name it IN1; which will represent the open contact shown in Figure 3.1. Click
on drop down menu next to the Name text field to select a data type for the data input. In
this tutorial, both data inputs should be Boolean, so select BOOL to make IN1 a Boolean
data input. Click on OK and the new data input IN1 will appear on the function block.
Repeat this process for IN2, which will represent the closed contact shown in Figure 3.1.
Now, the necessary data inputs for the basic function block are completed.

EXERCISE: Give the basic function block a single data output. Remember, the inputs
for the basic function block and are Boolean, so the output should also be Boolean.

After finishing the exercise, the ON_OFF_OC_B function block should look like Figure
3.5.

Figure 3.5 Basic Function Block with Input and Output Data

You may have the same information but not organized in the same way. To move events
and data within a function block, right click on the name of the event or data and select
either Move Up or Move Down to move it up or down.

Step 4: Interface – Data Connections

While the basic function block ON_OFF_OC_B now has events and data inputs, the two
are separate from each other. When an event is read into any function block, the data
that it is associated with is read before it follows a particular algorithm. Therefore, data
connections are necessary. When events or data are deleted, the data connections are
automatically deleted. However, they must be added separately after creating new events
and data. Since, there is only one event going into the function block, both data inputs
must be connected to that event. To do this, hold the Alt key and click on the word
EVENT associated with the event you want to make a connection for. The cursor will
change and by dragging it to the desired data input or output name (or the data type of the
data input or output name), a connection between an event and data will be made. If the
same procedure is done on the same connection, the connection will be deleted.

Hold the Alt key and click on EVENT next to the REQ event. The cursor will change
and drag it over to IN1 or the BOOL next to IN1. The data input IN1 is now connected
to the REQ event. Whenever an event comes to REQ, IN1 will then be read and go
through the basic function block. By using the same method, connect the REQ event to

 40

the IN2 data input and the CNF event to the OUT data output. Do not make any data
connections with the INIT or INITO events. When finished, the basic function block
should look like Figure 3.7.

Figure 3.7 Function Block Data Connected to Events

Now that the data is connected to the events for the basic function block, it is necessary to
set up an execution control chart for the events.

Step 5: Execution Control Charts

When events go into a basic function block, there is an execution control chart to
determine what happens next, what algorithms are run, and what events should be
outputted. For example, if event A is received, the chart will show that event A changes
the state of the function block from its initial state (usually called START) to a new state
that causes a certain algorithm to be activated. The execution control chart displays all
this and can be edited to allow for different states, events, and pathways.

In Step 3, it was determined that the INIT and INITO events were not necessary. When
Update was clicked on that point, an error appeared. That is because the default
execution control chart still had a state, two transitions, and an algorithm assigned to
INIT. Click on the entry named ECC on the left side of the screen and the workspace
will display the default execution control chart. In order to delete the INIT and INITO
events, the state, transitions, and algorithm assigned to INIT must be deleted. Right click
on the box named INIT, which represents the state INIT. Click on Delete and click OK
to delete the state, transitions with the state, and any algorithms associated with it. You
can now go back to Interface and delete the INIT and INITO events. Right click on the
box named REQ, select Delete, and click OK in order to make an execution control chart
from scratch. There should now only be a single box displayed that is named START in
the workspace.

The events for this basic function block ON_OFF_OC_B are REQ and CNF. Therefore,
there should be a state REQ. Right click in the empty workspace, click New, and select
State. A window will pop up to define the new state. Name the state REQ and give a
comment to know what REQ stands for, such as Request State; click OK when you are
finished. To make a state the initial state for the function block, click on the check box
marked Initial State. However, the START state already in the execution control chart is
the initial state for the basic function block, so there is no need to assign a new initial
state. Now this new REQ state, there needs to be a transition to that state. A transition

 41

provides the means that has the function block change from one state to another.
Creating a transition requires holding the Alt key, clicking on the source state of the
transition, and dragging the new cursor to the destination state. Do so now with START
as the source state and REQ as the destination state. Transitions not only require a source
and a destination, but also a condition. This condition is the arrival of the event itself,
whenever this event arrives, this transition among states will be made. The arrival of the
REQ event will cause a transition between these states; thus, right click on the transition
itself, click on Edit, and a window will pop up allowing the transition condition to be
changed. By default, the condition event is 1; click on the drop down menu under Event
and select REQ as the event condition. Click OK when finished assigning the new event
condition. This means whenever the event arrives at REQ, the function block will go
from the START state (assuming it is in that state to begin with) to the REQ state.
Eventually, the basic function block should return to the initial state to avoid remaining
the REQ state when there is no REQ event. Create a transition to return the function
block to its initial state. Hold the Alt key, click on the source state REQ, and drag the
cursor to the destination state START. After the REQ state, the basic function block will
always return to the initial state. Therefore, the condition for this transition should be 1.
The default condition for a transition is 1, so there is no need to edit it. That means after
the algorithm is run, the function block will always return to the START state from the
REQ state.

Now an algorithm must be defined before assigning algorithms to event. There are
already two algorithms pre-defined for the default basic function block, INIT and REQ.
Double click on each and select Delete to remove these algorithms. Click OK on the
Algorithm window and then click on the circle of arrows below the list on the left side of
the main screen to update the basic function block; the two algorithms in the list will then
be deleted. Now, to create a new algorithm named REQ, which will be used for the REQ
state. Right click on the empty workspace, click on New, and select Algorithm. A
window will pop up to define a new algorithm. Name it REQ in the text field named
Name. Underneath Name, there is a list of four languages for this algorithm. The four
languages that can be used for algorithms in basic function blocks are structure text (ST),
function block diagrams (FBD), ladder logic (LD), and Java. Since Figure 3.1 has is a
ladder logic diagram, we will use ladder logic (LD) to define the REQ algorithm. When
finished, the screen should look like Figure 3.8.

Figure 3.8 New Algorithm Definition Window

 42

Now that the algorithm name and language for the algorithm have been defined, the REQ
state should have its algorithm assigned to run whenever the function block reaches the
REQ state. The output event of the function block should also be fired at this state. To
do this, an action needs to be assigned to the REQ state. An action assigns an algorithm
to be run and/or an event to be outputted whenever the function block reaches a particular
state. Right click on the REQ state, click on New, and select Action. A window will pop
up to define an algorithm and event for the action. Select CNF as the event and REQ as
the algorithm, click OK when finished. This means once the basic function block is in
the REQ state, the REQ algorithm will execute, and the CNF event will be launched in
the end. We do not need an action for the START state, since it is acting as an initial
state and therefore does not need an algorithm or an event to output. If it is hard to see
the transitions and states, simply click and drag on the states and transitions to move
them. The execution control chart for ON_OFF_OC_B should look like Figure 3.9
below.

Figure 3.9 Execution Control Chart of ON_OFF_OC_B Function Block

Step 6: The REQ Algorithm

Click on the REQ at the bottom of the list on the left side of the screen and the workspace
will become blank. Since the REQ algorithm was originally defined to use ladder logic,
the workspace will be used to insert, modify, and delete the rungs for the ladder logic.
This way, the ladder logic can be implemented into the basic function block.

For this tutorial, the ladder logic shown in Figure 3.1 will be implemented in this
algorithm. Right click on the empty workspace, click on New, and select Rung. A
window will pop up to define the output of the rung and the expression of the rung. The
output of the function block is OUT, so the output of this algorithm should also be OUT.
For the expression, the ladder logic has an open switch called Start and a closed switch
called Stop. The two switches are in succession, so both must be true in order to yield an
output. This function block has two Boolean inputs, IN1 and IN2. IN1 should represent
the open switch called Start and IN2 should represent the closed switch called Stop.
Closed switches (and other NOT functions) can be coded by putting an exclamation mark
(!) after the variable. In this case, the ! is needed for IN2 since it is a closed contact. To
include successive switches in ladder logic, an ampersand (&) is used after IN2. A space
must be between any characters and the variable, otherwise the algorithm will not work
properly. The expression, with the output, is shown in Figure 3.10 below.

 43

Figure 3.10 Ladder Logic Expression, Output, and Rung for Basic Function Block

The basic function block ON_OFF_OC_B now has the algorithm that follows the ladder
logic required, an execution control chart that will have the algorithm be used, and the
necessary events and data.

Step 7: Compiling

While everything needed is now in the basic function block, ON_OFF_OC_B can not be
used yet. The final step is to compile this function block so it can be used in other
programs. Earlier, the compiler was defined as “package fb.rt.student;”. This is where
the Java compiler with the program will check for this file and compile it. First, save
this ON_OFF_OC_B basic function block as Java. This can be done by going to the
menu bar and selecting File -> Save As -> Java. Make absolutely certain the file is
saved in the already defined directory. If, for some reason, the program does not
automatically take you there, it can be found by this pathway: fbdk -> lib -> fb -> rt ->
student. The name of the function block will be saved with the extension .java and
automatically compiled. A window will appear, shown in Figure 3.11, if the file was
successfully compiled.

Figure 3.11 Java Successfully Compiled

 44

As it says in the window for Figure 3.11, before using this basic function block, the
program used for making this basic function block must be closed. Save the
ON_OFF_OC_B basic function block as an XML file so it has the proper .fbt extension.
Make sure to save the XML file in the same directory as your other function blocks
(suggestion: C:\fbdk\src\student). Now it can be used like any other function block in any
other system. After following this tutorial, you have successfully created a basic
function block.

EXERCISE: Implement the basic function block ON_OFF_OC_B within the system
shown in Figure 3.12.

Figure 3.12 Example using Generic Basic Function Blocks

SOLUTION: The proper implementation of this function block is shown in Figure 3.13.

 45

Figure 3.13 Example Using Created Basic Function Block, ON_OFF_OC_B

3.3 Summary

In summary, this tutorial has shown the following sequential steps for creating and using
a basic function block. To create a basic function block:

1. Set the properties of the basic function block.
2. Define the compiler information for the basic function block.
3. Define the interface of the basic function blocks: events, data inputs, and data

outputs.
4. Connect data inputs and outputs with corresponding events.
5. Modify the execution control chart to include the states of all events of the

basic function block.
6. Define all the transitions between the states in the execution control chart.
7. Define the algorithms and their languages.
8. Assign the event outputs and algorithms to each state under Actions in the

execution control chart.
9. Define the algorithm and its output.
10. Save the function block as a Java file in the same directory as the compiler.

The Java file will be compiled automatically.
11. Save the basic function block as a XML file.
12. Close the basic function block editor and it to a system like any other function

block.

 46

IEC TUTORIAL 4: PUBLISH AND SUBSCRIBE FUNCTION BLOCKS

4.1 Introduction

The IEC 61499 standard is for distributed control. In tutorials 1 through 3 we have
programmed function block applications but have not distributed those applications over
more than one device. In this tutorial we show the use of multiple devices in a network.
The IEC 61499 standard includes function blocks for enabling communication among
devices in a network. The function block pair publish and subscribe are used when
devices and their resources communicate with each other over a network, such as
Ethernet, field bus, Allen Bradley data highway, or similar. The publish function block
roughly corresponds to the message send (MSG) block in ladder logic. The message
send transmits a word to an address in another node (device, resource) on the network.
The subscribe function block enables a read at the recipient node of the contents of the
address to which the message has been transmitted.

SITUATION: There is a semiautomatic drill press that has two controllers. The first
controller (Device 1) runs a master panel with two buttons that control whether the
system is on or off. One switch is System Start. The other switch is System Stop. The
second controller (Device 2) runs the operating cycle of the drill press.

The two controllers must communicate with each other. Therefore, the data coming
from the master panel needs to indicate whether the system has been started or not.
Device 1 can do this by latching an ON indicator bit when the System Start switch is
open and the System Stop switch is closed, and unlatching that bit when the System Start
switch is closed and the System Stop switch is open. The status of that bit is then sent to
Device 2. A diagram of the drill press and control panels is shown in Figure 4.1a. The
ladder logic for the master panel is shown below in Figure 4.1b.

Semiautomatic Drill Press Operation:

1. System Start button (I1) turns the pilot light on.
2. A part to be drilled is placed under the spindle by the operator.
3. With a part in place, the operator must press both the left and the right start buttons

simultaneously. The shield down solenoid (O2) is enabled. Start buttons must be
held down until shield is down.

4. When the shield is down, the drill spindle starts to rotate and the drill head comes
down. The downward force is from an air cylinder (O4).

5. When the drill head is completely down, LSDD sensor is activated (I9).
6. The activation of LSDD turns off the drill down solenoid, the shield down solenoid,

and the drill motor. The spindle automatically returns to the up position and the
shield is raised.

7. If at any time you hit a left or right stop button, the operating cycle should shut down.
8. If at any time you hit the master panel stop button, the system should shut down.

 47

LSDD

BASE

Shield

LSPP
Part

LSSD

LAMP

LeftRight

Operation Panel
Master Panel

StopStart

 Figure 4.1a Drill Press Problem

0000

e
e
e
e
e
e
e
e
e
e
e
e
e
e
e

I:1

1

System Start

L
B3:0

0

ON Indicator Bit

EN
DN
ER

MSG
Read/Write Message
Read/Write Write
Target Device 500CPU
Control Block N7:100
Control Block Length 7

Setup Screen

MSG
Network Send

0001

e
e
e
e
e
e
e

I:1

2

System Stop

U
B3:0

0

ON Indicator Bit

MSGMSG
Network Send

e
e
e
e
e
e
e
e

0002 END

Read/Write Message
Read/Write Write
Target Device 500CPU
Control Block N7:100
Control Block Length 7

Setup Screen

EN
DN
ER

 48

Figure 4.1b Master Control Panel Ladder Logic (Device 1)

The controller of the operating cycle (Device 2) must receive bit B3/0 and then use it in
conjunction with the logic of two closed switches, Left Stop and Right Stop. Ultimately,
it will control the pilot lamp. The ladder logic for the first rung of Device 2 is shown
below in Figure 4.2.

Figure 4.2 Ladder Logic of First Rung of Device 2

Create a system of function blocks that realizes the above logic. Use both publish and
subscribe function blocks to control the communication of both controllers.

4.2 Steps in Implementing Publish and Subscribe Function Blocks

Step 1: Defining Multiple Devices.

Begin by creating a new system configuration and setting the properties. See Tutorial 1
for further details in doing so. Now, click on the entry below properties (the system
name) to edit the overall system. As done previously in Tutorial 1, edit the first device to
make it a FRAME_DEVICE and name it DEVICE_1. In prior tutorials, all of the
necessary function blocks and logic were placed on one device having one resource.
However, for this tutorial, two separate controllers that communicate with each other are
needed. Therefore, there needs to be two devices with one resource each. One device
will be for the master panel, the other for the operations panel. Right click on the empty
workspace, click on New, and then click on Device. A window will pop up allowing the
new device to be given a name and a device type. Give the new device the name

 49

DEVICE_2, and set it as a FRAME_DEVICE. Two devices will appear, similar to
Figure 4.3.

Figure 4.3 Establishing Two Devices in a System

As in Tutorial 1, these devices must have their boundaries defined. Just for the sake of
this tutorial, it would be good to have both devices appear next to each other. For the first
device, use [100,100,150,150] for the Bounds and [1,1] for the Grid. For the second
device, use [250,100,150,150] for the Bounds and [1,1] for the Grid. Now when the
program is launched later, two windows of the same size will appear right next to each
other. Before moving on, make sure that each device has one resource, and make sure
the resource type is defined as PANEL_RESOURCE.

Step 2: Setting Up For & Using Publish Function Blocks

The easiest way to create a system involving both PUBLISH and SUSCRIBE function
blocks is to start by setting up what needs to be published. Go into APP and insert two
IN_EVENT function blocks, call one System_Start and the other System_Stop. These
function blocks can be found in the directory fbdk-> src -> hmi; the same directory as
input and output Boolean function blocks. These two function blocks are the buttons on
the master panel. Now, as shown in Figure 4.1b, the data needs to be latched. Insert an
E_RS function block, which will act as a latch. Latches are event driven function
blocks, all event driven function blocks can be found in the directory fbdk -> src ->
events. Insert an OUT_BOOL function block to represent the ON indicator bit. Call it
System_On, the reason for that name will be explained later. Now, to represent the logic
of this part of the program, the System_Start function block sets the latch, whereas the
System_Stop function block unsets the latch. To do that, connect the IND event of the
System_Start function block to event S of the E_RS function block and connect the IND
event of the System_Stop function block to event R of the E_RS function block. Connect
the data output Q to the IN data input of the OUT_BOOL function block to have the
OUT_BOOL function block work properly. Connect the event EO of the latch to the
REQ event of the OUT_BOOL function block. The completed logic is shown in Figure
4.4 below.

 50

Figure 4.4 Completed Application program for Master Control Panel

Now the function block diagram for the master panel is nearly complete. This tutorial
will use DEVICE_1 as the master panel, so map all of the blocks except for the
System_On function block to the resource in DEVICE_1. Connect E_RESTART to the
first function block mapped to DEVICE_1 (this will probably be System_Start) to ensure
that blocks with INIT events are initialized. Now, the publish function block can be
implemented. While the data outputted from the latch normally would go to an output
function block, the second device-the operating panel-needs that data. As a result, this
device will publish that data output. That is, this device will always take the data coming
from the latch available to any subscribers-devices that read data from the publisher.
Insert a new function block, the publishing (and subscribing) function blocks are found
through the directory path: fbdk -> src -> net. Select PUBL_1, since only there is only
one data input necessary (SD_1) and the network connection will be local. Name this
function block Pub1.

Publish function blocks need an IP address and a port so data can be written to a specific
address. It is important to make sure the IP address and port used is not used by any
other devices, otherwise data and messages will get caught up and come in conflict with
other data and messages being moved on that address and port. For this tutorial, the IP
address 225.0.0.1 and the port 0001 is used to keep the data being written to and read
from a local address. Make the necessary data and event connections; the completed
master panel resource is shown in Figure 4.5.

 51

Figure 4.5 Master Panel Application Program with Network Communication

Step 3: Using A Subscribe Function Block

Go back to APP and map the System_On function block to the resource in DEVICE_2.
The reason why this function block is going to the other device is to check whether the
communication between the two resources is successful. The output function block is
called System_On, since whenever the System_Start button is pressed, that output
received from the master panel will be 1, representing that the system is on. If
System_Stop is pressed, the output received from the master panel will be 0, representing
that the system is off. In DEVICE_1, the resource is outputting this data from the latch to
a PUBL_1 function block.

To receive data from a publish function block, there needs to be a subscribe function
block. In the same directory where the publish function blocks are located, insert a
SUBL_1 function block and name it Sub1. The publish function block has one data input
being written; therefore, only one data output needs to be subscribed from the publisher.
Exactly like the publish function block, the subscribe function block needs an IP address
and a port to read data from. Make absolutely certain that the IP address and port defined
for the Subscribe function block is exactly the same as the IP address and port defined for
the Publish function block. Otherwise, the SUBL_1 function block will not receive the
data from the PUBL_1 function block. Connect the data and events and the resource for
the second device should look like Figure 4.6 below.

 52

Figure 4.6 Operations Panel Resource with Network Communication

Step 4: Completing the System

Now, to complete the system, the data that comes from the SUBSCRIBE_1 function
block acts as an open switch that comes in succession with two closed switches, Left Stop
and Right Stop. Insert two IN_BOOL function blocks, called Left_Stop and Right_Stop,
into the resource in DEVICE_2. If you have completed the Semiautomatic Drill Press
example, you should have a composite function block that has the logic of two successive
closed switches called AND_2_CC. If not, simply create a new composite function block
with that name. The details on how to make a composite function block are in Tutorial 2.
Make sure the composite function block has the following interface and system within it,
shown in Figures 4.7a and 4.7b.

Left: Figure 4.7a, AND_2_CC Interface; Right: Figure 4.7b, AND_2_CC System

Save and compile the AND_2_CC function block first as a Java file and then as a XML
file. If it is successful, insert the AND_2_CC function block and connect it with the two
IN_BOOL function blocks. In this tutorial, CloseClose is the name for the AND_2_CC
function block. The data that comes from the subscriber is in succession with the two
closed switches, so the data output of AND_2_CC and the data from SUBSCRIBE_1
needs to be connected with a FB_AND function block. In this tutorial, this FB_AND
function block is named And1. The output of that function block should be connected
with the final output, the Pilot Lamp. Insert an OUT_BOOL function block for the Pilot

 53

Lamp (named Pilot_Lamp) and make the final connections to complete the operations
panel. The resource in DEVICE_2 should now look like Figure 4.8.

Figure 4.8 Completed Application Program for the Operations Panel Resource

Now that the resources in both devices are complete, launch the program. By pressing
System Start, both lights will turn on. If you then select Left Stop and/or Right Stop, the
Pilot Lamp will turn off but the System On should be on. If you press System Stop, both
lights will turn off.

4.3 Summary

This tutorial has shown the following sequential steps for basic use of publish and
subscribe function blocks. These steps are:

1. Create a new system.
2. Define as many devices and resources as necessary.
3. First program the function blocks that will yield the data that will be published.
4. Insert the necessary publish function blocks in resources to publish the data.
5. Define a proper IP address and port for each publish function block.
6. Insert the subscribing function blocks in other resources.
7. Define the exact same IP address and port as the publish function blocks for the

subscriber function blocks to receive the data being published.
8. Using this data, program additional function blocks that may use this received

data.

 54

IEC TUTORIAL 5: CLIENT AND SERVER FUNCTION BLOCKS

5.1 Introduction

In addition to publish and subscribe function blocks, the IEC 61499 standard includes
client and client function blocks. Similar to publish and subscribe function blocks, client
and server function blocks are used in order for resources within devices to communicate
with other resources in other devices on a network. What makes them different is how
the communication works. The client function block communicates with the server
function block, but not with other client function blocks. When a client function block
requests information, the server function block responds by receiving and returning data
to the address of the client function block.

SITUATION: There is a semiautomatic drill press that has two controllers. The first
controller acts as a master panel, two switches that control whether the system is on or
off. One switch is called System Start, when activated, the system will start. The other
switch is called System Stop. Whenever System Stop is activated, the entire system
should stop in spite of the state of other switches. There is a lamp on the master panel to
indicate whether the system is on or not. The second controller acts as an operation
panel, complete with any inputs and outputs that affect the operation cycle, but not
controlling the entire system.

The two controllers must communicate with each other. Therefore, the data coming
from the master panel needs to indicate whether the system is on or not. It can do this by
switching on the open switch System Start, or by turning on the system’s lamp (the lamp
acts as an open switch). The ladder logic for the master panel is shown below in Figure
5.1.

0000

e
e
e
e
e
e
e
e
e
e

I:1

1

System Start

O:2

1

Lamp

I:1

2

System Stop

O:2

1

Lamp

B3:0

0

ON Indicator Bit

0001 END

Figure 5.1 Master Panel Ladder Logic Diagram

The controller panel must receive the ON Indicator Bit and will control the Pilot Lamp in
conjunction with two closed switches, Left Stop and Right Stop. Whether the Pilot
Lamp is on or not will control whether the Safety Down Solenoid is on in conjunction
with the open switches Left Start, Right Start, LSPP Part in Place, LSSD Drill Down, and
LSSD Shield Down. The Safety Down Solenoid in conjunction with the LSSD Shield
Down open switch will control the Spindle Motor, which will ultimately control the Drill
Down Solenoid. The ladder logic for the controller is shown below in Figure 5.2. (Note:

 55

This is the exact same ladder logic as seen in the Semiautomatic Drill Press example. It
is suggested that you complete the example first in Tutorial 4, as this tutorial will only
cover the usage of client and server function blocks.)

0000

e
e
e
e
e
e
e
e
e
e

EN
DN
ER

MSG
Read/Write Message
Read/Write Read
Target Device 500CPU
Control Block N7:100
Control Block Length 7

Setup Screen

MSG
Message Get

Enable Pilot Lamp

0001

e
e
e
e
e
e

B3:0

0

System On Indicator
I:1

6

Left Stop
I:1

7

Right Stop

O:2

1

Pilot Lamp

Bring Safety Shield into Position

0002

e
e
e
e
e
e
e
e
e
e
e
e
e
e

O:2

1

Pilot Lamp
I:1

3

 LSPP
Part in Place

I:1

4

Left Start
I:1

5

Right Start

I:1

8

 LSSD
Shield Down

I:1

9

 LSSD
Drill Down

O:2

2

Shield
Down
Solenoid

Enable Drill Motor Rotation

0003

e
e
e
e
e
e
e
e

O:2

2

Shield
Down
Solenoid

I:1

8

 LSSD
Shield Down

O:2

3

Spindle Motor

Move Drill Down

0004

e
e
e
e
e
e

O:2

3

Spindle Motor

O:2

4

Drill Down Solenoid

0005 END

Figure 5.2 Ladder Logic of a Semiautomatic Drill Press

STEP 1: Define Devices and Resources

Create a new system and define their properties, as done in Tutorial 1. Create two
devices and define them as FRAME_DEVICES. It may be useful to denote one device as
the master panel and the other as the controller panel. For configuring the devices,
DEV1 (the master panel) will have the bounds [100,100,150,150] and a grid of [1,1].
DEV2 (the controller panel) will have the bounds [250,100,150,295] and a grid of [1,1].

 56

Once finished, make sure each device has one resource, both defined as
PANEL_RESOURCE.

STEP 2: Setting Up & Using Client Function Blocks

When working with multiple resources, it is sometimes easier to just set up the
application within the resources themselves as opposed to using APP1 and then mapping
each function block to the proper resource. It is easier to check whether the system
works properly, since launching the system only carries out what is in the resources and
devices. More apt to this tutorial, it is easier to focus on using a client function block.
As mentioned earlier, client function blocks only communicate with the server function
block. Not just receiving information from the server, but also assigning information to
the server. For this tutorial, the ON Indicator Bit is going to be communicated between
the two devices, so the client and server function blocks will be passing that information
between each other. On its own, a server function block does not have any information,
which is why a client function block (or other function blocks in that resource) must
assign data to it. Therefore, data from the master panel acts as the client and the
controller panel acts as the server. It will not work if the roles are reversed.

Go into RES1 in DEV1 and insert function blocks to accomplish the ladder logic shown
in Figure 5.1. Ideally, two IN_BOOL function blocks will be used for the switches; and a
FB_AND function block, a FB_OR function block, and a FB_NOT function block will
accomplish the logic of the system. Note that unlike Tutorial 4, the lamp is not being
latched. The master panel, without the means for communication, is shown in Figure 5.3
below.

Figure 5.3 Application of Master Panel Resource

 57

Launch the system and check to see if the system works; the light named lamp should
turn on when System Start is checked on (you may need to check each input, sometimes
it does not work right away). Now the client function block can be added to this
resource. As with the publish and subscribe function blocks, the client function blocks
can be found by following directory path: fbdk -> src -> net. For this tutorial, load up the
CLIENT_2_1 function block, call it Client, and insert it into the resource for the master
panel.

The CLIENT_2_1 function block, unlike a publish function block, contains both data
inputs and data outputs. This particular function block allows for two data inputs, which
will be read and sent the server at the specified address when there is a REQ event. Data
on the corresponding server (either read into or stored on it) can be outputted through the
single data output. There are multiple client function blocks with varying amounts of
data inputs and outputs. However, for this tutorial, the master panel only needs to output
the OUT Indicator Bit to the controller panel. Therefore, only a single data input of the
Client function block will be used. Connect the OUT data output of the And function
block to the SD_1 data input of the Client function block. Connect the CNF event of the
FB_AND function block to the REQ event of the Client function block, and connect the
INIT event of the Client function block from the INITO event of the Lamp function
block. Once the event and data connections are finished, assign 1 to the QI of the Client
function block. Right click on the Client function block to configure it and give it the ID
“localhost:1499.” An IP address is unnecessary since this will run on a solitary
computer. 1499 is the port that will be used for transferring data. The master panel
resource should look like Figure 5.4 below.

Figure 5.4 Master Panel Resource with Network Connection

 58

STEP 3: Setting Up & Using Server Function Blocks

Now the master panel device is complete and the controller panel device must be set up.
The master panel device used a CLIENT_2_1 function block, and since client function
blocks only communicate with corresponding server function blocks, the controller panel
must have a server function block. In the same directory as the client function blocks,
load and insert a SERVER_1_2 function block and call it Server. Just like the
CLIENT_2_1 function block, the SERVER_1_2 function block has both data inputs and
data outputs. If there is data coming into data input of the Server function block, the
Server function block will send that data to Client function blocks that request data.
Data that comes to the server can be outputted through its data outputs. For this tutorial,
there is no need to send any information to the Client function block as the CLIENT_2_1
function block is sending the ON Indicator Bit data. Therefore, only one data output
needs to be used. Configure the SERVER_1_2 function block and give it the same ID as
the CLIENT_2_1 function block. The ID for both the Client and the Server must be the
same; otherwise there will be no communication between the two devices. Also make
sure to assign 1 to the QI data input of the SERVER_1_2 function block and connect it
with the E_RESTART function block in the resource. When finished, the controller
panel resource should look like Figure 5.5.

To check whether the two devices will communicate properly, insert an OUT_BOOL
function block into the resource in DEV2. If the communication works properly, both the
Lamp and Check (the name for this OUT_BOOL function block) will turn on when
System Start is pressed; both will turn off when System Stop is pressed. Configure the
function block, assign QI the parameter of 1, and connect it with the SERVER_1_2
function block. Save the system and then go to the menu bar, click on Run, click on
Launch, and click on the system name.

Figure 5.5 Controller Panel Resource with Network Communication

When the System Start check box is checked on, both the Lamp and the Check should
both turn on (turn red, in this case). When System Stop is checked on, they should turn
off (turn black, in this case). If this occurs, the communication between the two devices
is working.

 59

At this point, you can delete the connections and the OUT_BOOL function block used
for testing the communication between the two devices. Now the rest of the controller
panel’s logic can be fulfilled. As mentioned earlier, this logic is the same as the
Semiautomatic Drill Press example. If you have not done that example, it is advised that
you go complete the example. If you have completed that example, simply copy what
was done in that example into the second resource except for the System Start, System
Stop, and Control1 function blocks as the SERVER_1_2 function block replaces those
three function blocks. Connect the SERVER_1_2 function block to that system of
function blocks to complete the controller panel. Figure 5.6 shows how that is
accomplished. Only a part of the controller panel logic in the resource in DEV2 is shown
in Figure 5.6 with the SERVER_1_2 function block.

Figure 5.6 Application of Controller Panel Logic with Network Connection

Once the connection is made, save the system, and launch it to see if it works properly. If
the system done for the Semiautomatic Drill Press example is correct and used here, then
it should work properly since the communication between the two devices already works.

 60

5.3 Summary

This tutorial has shown the following sequential steps for basic use of client and server
function blocks. To design a system that uses client and server function blocks.

1. Create a new system.
2. Define as many devices and resources as necessary.
3. First program the function blocks that will yield the data that the client will send.
4. Insert the CLIENT function blocks in resources to send and receive the desired

data.
5. Define a proper IP address and port for each CLIENT function block.
6. Insert the SERVER function block in other resources or devices.
7. Define the exact same IP address and port as the CLIENT function blocks for the

SERVER function block to receive the data from the clients and send data right
back.

8. Using this data, program additional function blocks that may use this received
data.

 61

IEC TUTORIAL 6: ADDING JAVA CODE TO A FUNCTION BLOCK

6.1 Introduction

When creating basic function blocks, it is important to input a proper algorithm so it can
perform the desired action. In some cases it is necessary to program the algorithm in a
high level programming language. The Holobloc software supports programming in
Java. This lesson will provide an example on how to incorporate a Java algorithm into a
function block.

SITUATION: An Automated Guided Vehicle (AGV) is an autonomous materials
handling device that travels on a guided path, called a network. Figure 6.1 shows a
network of 9 nodes that are connected by links. Links are identified by node labels. For
example, link 12 is the link between nodes 1 and 2.

 1 2 3

4
5 6

7 8 9

Figure 6.1 Automated Guided Vehicle Network

Information on the status of a link is kept in a database table. The database is named
TC_DB and the table, shown in Figure 6.2, is called LINK_STATUS. The table has two
fields. LINK_ID is the link identification and L_STATUS indicates whether the link is
currently occupied by an AGV (1) or is not occupied (0). The objective of the exercise is
to create a function block that will take an inquiry about the status of a particular
LINK_ID and return the current L_STATUS of the specified link. (Note: This tutorial
assumes the values in LINK_ID are in the database as a number data type, specifically as
an integer. Otherwise, more modification to the final Java code will be necessary to get
the final program to work properly.)

LINK_ID L_STATUS
12 0
14 0
23 0
25 0
36 0
45 0

LINK_ID (Number, Long Int.)
L_STATUS (Number, Long Int.)

 62

LINK_ID L_STATUS
47 0
56 0
58 0
69 0
78 0
89 0

Figure 6.2 LINK_STATUS Table

This exercise will illustrate an important function in a distributed system, i.e., performing
a database query. Such a function is usually coded in a high level language. Therefore,
this example is an appropriate vehicle to illustrate the use of a Java algorithm within a
function block.

Create a basic function block that accomplishes those tasks and implement it into a
system. The user should be able to input a LINK_ID and there should be an output
L_STATUS. For this we will use text boxes. In addition the system should be
controlled by a momentary contact button such that, when it is toggled on, the function
block (which we shall call TC_Agent) will read from the database.

6.2 Steps to Add Java Code to a Function Block

Step 1: Setting Up the Framework – Controlling the System

The first thing we are going to do is to establish the “framework” for inputting
requirements to the TC_AGENT function block and displaying the output from the
function block. Later we will design the TC_AGENT function block and embed it within
the framework.

Start a new system configuration and give it a name such as TC_AGENT_1. Complete
the Versions information and configure the device as a single resource device. Configure
DEV1 as a FRAME_DEVICE and RES1 as a PANEL_RESOURCE as done in the
previous tutorials. Do not forget to define the bounds and grid parameters for the device
(use any values you wish, they can be easily edited in the future).

For this system, a button (an IN_EVENT function block) will control when the
TC_AGENT will perform its function. Therefore, in the application editing window,
insert in an IN_EVENT function block. The IN_EVENT function block can be found
using the following directory path: src -> hmi Label it BUTTON.

For the text input for the LINK_ID, load and insert an IN_ANY function block. Label it
LINK_IN. There exists a function blocks for text inputs and text outputs, but the
advantage to using IN_ANY (and OUT_ANY) function blocks is that the type of data
that comes in or comes out can defined as any data type without. For this lesson,
configure the IN_ANY function block as WSTRING data type, but it can just as easily be

 63

REAL or STRING or any other type. Given that all of the LINK_ID values have two
digits (see Figure 6.2), define W as 2. W represents the width of the text box for the
input. By making it 2 there will be a limit as to how many characters (or digits in this
case) you can type in. Since the input is an IN_ANY function block, insert an
OUT_ANY function block and define the type as WSTRING. Label it LINK_OUT.
There is no need, however, to define a width for the text box for the output. The IVAL
configuration item is for an initial value. By leaving it blank, the initial value defaults to
NULL.

Eventually a basic function block will be created to represent the TC_AGENT that will
take a LINK_ID from the IN_ANY function block and output L_STATUS to the
OUT_ANY function blocks. The IN_EVENT function block will control when the
inputted text from the IN_ANY function block will go into the TCAGENT basic function
block and then onto the OUT_ANY function block.

Connect the function blocks as shown in Figure 6.3a. This will allow us to test the basic
framework. Make sure that the QI input is set equal to 1 for each function block to make
sure they will all fire. Map the application to DEV1.RES1, assuming that the framework
was not directly programmed in the resource. Make sure to connect the COLD event
output of E_RESTART to the INIT event input of BUTTON, and run the application. By
entering a link in the LINK_ID text box and clicking on the ON/OFF momentary contact
button, an identical string should appear in the LINK_OUT text box. This is shown in
Figure 6.3b.

Figure 6.3a Framework Connected for Testing

Figure 6.3b Testing Panel for Function Block Framework

 64

Step 2: Creating the TCAGENT Basic Function Block

Save the system configuration (framework) for TC_AGENT_1. The next step is to create
a new basic function block for TC_AGENT. The procedure for doing so follows closely
that of Tutorial 3, except here we will use Java as the language for the algorithm. This
tutorial will continue with the assumption that Tutorial 3 has been completed. If not, it is
highly recommended that Tutorial 3 should be completed before moving on, as it will
demonstrate step by step how to create a new function block.

At the menu bar, click on File -> New -> FB Type -> Basic FB to create a new Basic
Function Block. Name this function block TC_AGENT and input the proper version
information. For the Compiler Info, define the header as “package fb.rt.rutgers.b1;”. If
such a directory does not exist, either change the name of the directory (e.g. if you wish
to use the student directory already within the FBDK directory, change the header to
package fb.rt.student) or create the sub directories rutgers and b1 within the rt directory.
Before continuing on, make sure to input the proper information also for Compilers.

The TC_AGENT function block will not require INIT and INITO events; it will also not
need the data input QI and the data output QO. First, delete the two data inputs. Then,
click on the execution control chart for the function block and delete the INIT state and
click OK to delete any connections with it. Afterwards, delete the INIT algorithm by
double clicking on the INIT algorithm on the left side of the screen and select Delete.
After completing all of this, delete both the INIT and INITO events. Go back to the
Interface entry and right click on the function block to create a new data input and a new
data output. Make sure both variables have the data type WSTRING. While the function
block editor has a data type called STRING, it is not the same as the String data type in
Java. Since it is compatible with the String data type in Java, WSTRING is the
appropriate data type. Name the data input, INPUT, and the data output, OUTPUT.
Connect the REQ event with the INPUT data input and connect the CNF event with the
OUTPUT data output. The basic function should now look like Figure 6.4.

Figure 6.4 Partially Configured TC_AGENT Function Block

For the execution control chart, the only change that needs to be made is the algorithm.
Double click on the REQ algorithm on the list to the left and select Java as the language.
Do not put anything into the REQ algorithm, leave it blank for now. Everything should
be completed and the execution control chart should look like Figure 6.5 below.

 65

Figure 6.5 Execution Control Chart

Everything that had to be done to configure TC_AGENT function block is now complete.
Save the TC_AGENT function block as a Java file in the directory specified for the
Compiler Info header. While no algorithm has been added yet, the file should be
compiled successfully. Save the TC_AGENT function block as a XML file, and then exit
the function block editor. Open up the function block editor and open the system
configuration TC_AGENT_1 and insert the TC_AGENT function block into the
workspace (use any name for the function block, here it will be called CONTROL).
Connect the TC_AGENT function block with the LINK_IN as its input and LINK_OUT
as its output. The framework is now fully completed; it should look like Figure 6.6.
Save the framework and close the software.

Figure 6.6 Framework with TC_AGENT Basic Function Block

Step 3: Editing the TC_AGENT Algorithm – Part I

When the Java file was saved, it was saved into the same file path as defined in the
package. To find the file, assuming the “package fb.rt.rutgers.b1;” was defined as the
header, follow the file path C:\> fbdk -> lib -> fb -> rt -> rutgers-> b1. Open up the b1
folder for all file types and you can see the Java file and class for TC_AGENT. Open up
the TC_AGENT.java file by right clicking on the file name, click on Open With, and
select Notepad. With Notepad, the Java code written for the basic function block
TC_AGENT can be edited. Notice the code already in the file. It represents the events,
data, and connections programmed for this function block type. Scroll all the way down
to the end of the file and you will find the following lines, shown in Figure 6.7 below.

 66

Figure 6.7 Java Code for REQ Algorithm within TC_AGENT

In between the brackets is where the code for the REQ algorithm would go if code was
entered into the large text space at the bottom of the REQ algorithm window. When
creating the basic function block, nothing was put in for the algorithm. At this point, we
can develop our own code and have the function block call other Java files. For reading a
database, there must be a module that actually performs the reading function as well as a
module that controls connections to the Agent database. To accomplish this, consider
the following list of Java modules called.

TCAGENT.java is the main program which will call:

Î A module which will read from a database. To do this, it will call:
o A module which will connect and disconnect the database from the

Read module. That will require:
� The Agent database, that needs to be defined.

The best way to accomplish this is to work from the bottom of the list and up. That way
no important steps such as defining the database are missed. Furthermore, the modules
that will be called in other programs will already be written and have specific names to be
called by so they can be used again.

Step 4: Defining a Database

First, make sure you have a database set up in Access called Agent with a table called
LINK_STATUS. In that table there should be the data given in Figure 6.2. Save it to the
same directory as the TC_AGENT.java file. For Java files to call other Java files or other
programs, they need to be in the same directory or have their exact directory path defined
otherwise they will not be found.

In order to use a database in Java programs, the database needs to be defined with a data
source name. Otherwise, it will not be recognized by any program that tries to open or
close a connection to the database. Under Control Panel on the computer, there should
be an icon for Administrative Tools. Click on it and then click on Data Sources (ODBC).
A window will appear with a series of tabs. For this case, only be concerned with User
DSN. Click on Add to add another data source. Select Microsoft Access Driver (*.mdb)
and click on Finish. Name the database source Agent or the name of the database itself.
Click on Select, locate the target database, and select it to define the location of the
database. Click on OK when finished, which will return you to the ODBC Microsoft
Access Setup. To finish the process, click on OK. Once finished, the window under the
User DSN tab should look like Figure 6.8 below. Click on OK to close the ODBC Data
Source Administrator.

 67

Figure 6.8 Data Source Name Window

Step 5: Adding Modules

Once the database has been defined, now a Java program can be written that will use it.
Start with the program that will open and close a connection the Agent database. This
file will be vital, as opening a connection to the Agent database will allow its contents to
be read by other programs. Open up a new file in Notepad and immediately select Save
As, change the file type to “All Files,” and save the file as ConnectToDataBase.java. The
file type must be listed as “All Files” to ensure that the file is saved as a Java file and not
a text file. By including the .java extension, it will automatically be defined as a Java
file. Since this file will be called by another file which will be called by the
TC_AGENT.java file, save it in the same directory as the TC_AGENT.java file. Just like
with the database, the Java file needs to be in the same directory so the file called can be
found and be used when the program runs. However, unlike the database, you absolutely
need to include the compiler information for the function block that will call it as the first
line of the Java file. Therefore, insert “package fb.rt.rutgers.b1;” without the quotes as
the first line of code for ConnectToDataBase.java. Now you can program the rest of the
code to open and close a connection to a database file. The detailed code for
ConnectToDataBase.java is in section 6.4.A. When finished, do not forget to save
ConnectToDataBase.java. It is a good idea to check for any syntax or other errors in the
program before moving on. Compile the ConnectToDataBase.java file with the Java
compiler installed on your computer.

Once the ConnectToDataBase.java file is complete, create a new Java file in Notepad for
the module that will read from the Agent database. Save it as Read.java in the same

 68

directory as the TC_AGENT.java file, ConnectToDataBase.java file, and the TC_DB
database. Now write the code for Read.java. Do not forget that this module must call the
ConnectToDataBase module and it must have its first line be “package fb.rt.rutgers.b1;”
without the quotes. The complete code for Read.java is in section 6.4.B. (Note: In
section 6.4.B, notice that the Read module’s input is an integer and the output is a string.
Since the TC_AGENT function block’s input and output are strings, you may want to
make some alterations to the code given in section 6.4.B.) If an error occurs compiling
the Read module, then it is necessary to write the TC_AGENT.java file-where it should
compile correctly afterwards.

Step 6: Editing the TC_AGENT Algorithm – Part II

Now that the Read.java and ConnectToDataBase.java files are created and in the same
directory as the TC_AGENT.java file, now the code can be written for the REQ
algorithm for the TC_AGENT basic function block. The fbdk software does not have its
own compiler; thus, any Java code that is in the algorithm must be inserted into the text
space provided in the algorithm window, which will be compiled when the Java file is
saved. Code can not be inputted into the resulting Java file in Notepad; it will not be
there when the Java file is saved again in the fbdk software. Therefore, open the fbdk
editor, load the TC_AGENT function, and double click on the REQ algorithm at the
bottom of the list on the left. Now the code can be written in the large text space at the
bottom of the window that will pop up from double clicking on the REQ algorithm. This
code will take the data coming into the function block, call the Read module, which will
call the ConnectToDataBase module, check for the corresponding L_STATUS for the
inputted LINK_ID, and output that L_STATUS from the function block. All that is
necessary to do this is to equate a variable to the INPUT.value (the value of the data
coming into the INPUT data input), call the Read module (which will take care of
everything but the output), and equate the OUTPUT.value (the value of the data that will
come from the OUTPUT data output) from a string variable. Make sure that the line that
calls the Read module is put in at the beginning of the program, just after the first open
bracket under the class definition. The complete, detailed code for the REQ algorithm of
the TC_AGENT is shown in section 6.4.C.

Save the TC_AGENT function block again as a Java file and it will be compiled
automatically. Any errors in either of the TC_AGENT.java, Read.java, or
ConnectToDataBase.java files will be found and the program will tell you where the
problem is. The reason why errors in these other modules are also found when
compiling TC_AGENT is because when TC_AGENT is run, those other modules are
called. If they have errors, then TC_AGENT will not work at all. If there are no errors,
save the TC_AGENT function block as an XML file. Close the program to ensure that
the TC_AGENT function block works with the most recent Java class file when used.
Start the program and load the TC_AGENT_1 system configuration, check to make sure
the framework is in order, and run the program. Test the program by typing in 12 in the
input textbox and then clicking on the On/Off checkbox. If “0” comes up in the other
textbox, then the program works.

 69

EXERCISE: If you insert a number that is not in the database for LINK_ID or a letter in
the input textbox, nothing will change or nothing will appear in the output textbox. By
checking the corresponding cmd.exe window, there will be the line
“java.lang.NumberFormatException: null.” While it is not wrong, it does not directly tell
the user that there is an error. Edit the Read.java and TCAGENT.java files in a way such
that whenever a number not in the database or a letter is typed in, the output textbox
yields the word “Error.”

6.3 Summary

This tutorial has shown the following sequential steps to implement Java code and
modules with function blocks. To implement Java code with function blocks:

1. Create a new basic function block and set up the necessary properties, interface,

and execution control chart.
2. Define the algorithm(s) as Java language.
3. When finished setting up the basic function block, save it first as a Java file and

compile it. Save it as an XML file afterwards.
4. Define any databases or other files that the Java program will get and receive any

information from. Make sure they are saved in the same directory as the Java
file.

5. Open up the directory where the Java file was saved and open up the Java file in
Notepad (or any other applicable Java-editing program).

6. Write any Java modules and programs that the function block will use. You may
choose to compile each file separately to check for any errors.

7. Save any modules and programs with the extension .java under the file type “All
Files.”

8. Write the Java code within the function block for the algorithm(s) by double
clicking on the algorithm name on the left side of the screen and inputting the
Java code into the text box at the bottom of the algorithm’s window.

9. Save and overwrite the Java file for the function block, the Java file will
automatically be compiled.

10. Implement the function block in a system and run it to test if it works. If not, you
may have to modify the Java code, which will require restarting the function
block editor program and re-compiling the file.

 70

6.4.A Code for the Module ConnectToDataBase.java

package fb.rt.rutgers.b1;
import java.sql.*;
import java.util.*;

public class ConnectToDataBase{

 protected Connection connection;

 public void openConnection(){
 try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 String url ="jdbc:odbc:Agent";
 connection = DriverManager.getConnection(url);
 }
 catch(ClassNotFoundException cnfe){
 System.err.println(cnfe);
 }
 catch(SQLException sqle){
 System.err.println(sqle);
 }
 }
 public void closeConnection(){
 if(connection != null)
 try{
 connection.close();
 connection = null;
 }
 catch(SQLException sqle){
 System.err.println(sqle);
 }
 }
}

 71

6.4.B Code for the Module Read.java

package fb.rt.rutgers.b1;
import java.sql.*;
import java.util.*;

class Read extends ConnectToDataBase{
 public String read_database(int poll){
 try{
 openConnection();
 Statement statement = connection.createStatement();
 String query = "select L_STATUS from LINK_STATUS where
LINK_ID = " + poll;
 ResultSet rs = statement.executeQuery(query);

 if(rs.next()){
 String result = rs.getString("L_STATUS");
 closeConnection();
 return result;
 }
 else{
 return null;
 }
 }
 catch(SQLException sqle){
 return null;
 }
 }
 public static void main(String[] args){
 Read r = new Read();

 System.out.println(r.read_database(12));
 }
}

 72

6.4.C Code for the Function Block Java File TCAGENT.java

REQ Algorithm

 int in = 0;
 try{
 in = Integer.parseInt(""+INPUT.value);
 }
 catch(NumberFormatException e){
 System.err.println(e);
 }

 Read readDB = new Read();
 try{
 int out1 = Integer.parseInt(readDB.read_database(in));
 String out2 = Integer.toString(out1);
 OUTPUT.value = out2;
 CNF.serviceEvent(this);
 }
 catch(NumberFormatException e1){
 System.err.println(e1);
 }

 73

IEC TUTORIAL 7: DESIGNING DATABASE QUERY FUNCTION BLOCKS

7.1 Introduction

Certain situations require the use of a database within a function block’s algorithm.
However, the function block editor program does not have a function block available that
works with databases. As a result, function blocks must be made that connects to the
database and runs commands using it. This was done in Tutorial 6. However, the
database, the table, and the conditions used in that tutorial were coded directly into the
function block. The function block does not account for situations where there are other
or multiple databases that are used-the one created in Tutorial 6 only works with the
database TC_DB. The function block does not query the user for a database that may be
something other than Agent. This lesson will provide an example on how to make a
function block that queries a database that the user defines within the function block.

SITUATION: An Automated Guided Vehicle (AGV) is an autonomous materials
handling device that travels on a guided path, called a network. Figure 7.1 shows a
network of 9 nodes that are connected by links. Links are identified by node labels. For
example, link 12 is the link between nodes1 and 2.

 1 2 3

4
5 6

7 8 9

Figure 7.1 Automated Guided Vehicle Network

Information on the status of a link is kept in a database table. The database is named
Agent and the table, shown in Figure 7.2, is called LINK_STATUS. The table has two
fields. LINK_ID is the link identification and L_STATUS indicates whether the link is
currently occupied by an AGV (1) or is not occupied (0). The objective of the exercise is
to create a function block that will take an inquiry about the status of a particular
LINK_ID and return the current L_STATUS of the specified link.

LINK_ID L_STATUS
12 0
14 0
23 0
25 0
36 0

LINK_ID (Number, Long Int.)
L_STATUS (Number, Long Int.)

 74

LINK_ID L_STATUS
45 0
47 0
56 0
58 0
69 0
78 0
89 0

Figure 7.2 LINK_STATUS Table

This exercise will perform a database query with variables for the database, table, and
conditions as opposed to static figures for each. A high level programming language is
necessary to accomplish this. A Java algorithm will be used within the function block as
a result.

Create a basic function block called DB_SELECT_1 that accomplishes the task
recognizing and reading from a database that the user defines. The user should be able to
input a LINK_ID and there should be an output L_STATUS. For this we will use text
boxes. To define the database, the user will provide the name of the database that will be
used, the table within that database, and the SELECT and WHERE conditions used to
retrieve the L_STATUS. In addition, the system should be controlled by a momentary
contact button such that, when it is toggled on, the function block will read from the
database.

7.2 Steps in Creating a Database Query Function Block

Step 1: Setting Up the Framework – Controlling the System

The first thing we are going to do is to establish the “framework” for inputting
requirements to the DB_SELECT_1 function block and displaying the output from the
function block. Later, the DB_SELECT_1 function block will be created, designed, and
eventually embedded within the framework.

Start a new system configuration and give it a name such as DB_Select. Complete the
Versions information, define the default device DEV1 as a FRAME_DEVICE, and
define the resource within DEV1 as a PANEL_RESOURCE called RES1. Do not forget
to define the bounds and grid parameters for the device (there is no specific size
necessary).

For this system, a button (an IN_EVENT function block) will control when the
DB_SELECT_1 function block will perform its function. Therefore, in the application
editing window, insert in an IN_EVENT function block. Label it On_Off. For the text
input for the LINK_ID, insert an IN_ANY function block and name it Input. Configure
the IN_ANY function block as WSTRING data type, since the inputted information will
be a string. While the function block editor has a data type called STRING, it is not the

 75

same as the String data type in Java. Since it is compatible with the String data type in
Java, WSTRING is the appropriate data type. Given that we know that all of the
LINK_ID values have two digits (see Figure 7.2), set W as 2. Since the input is an
IN_ANY function block, insert an OUT_ANY function block into the workspace. Name
this function block Output and define the type as WSTRING. There is no need, however,
to define a width for the text box for the output. There is also no need to define an initial
value for either of the IN_ANY and OUT_ANY function blocks. Do not forget to assign
1 to all three function block’s QI data input to make sure they will all function properly
when the program is run.

Eventually, a basic function block will be developed to represent the DB_SELECT_1 that
will take a LINK_ID from the IN_ANY function block and output L_STATUS to the
OUT_ANY function blocks. Unlike in Tutorial 6, the user will have to assign to the
function block the database (Agent), the table (LINK_STATUS), and the conditions to
get the information (L_STATUS, LINK_ID). The IN_EVENT function block will control
when the inputted text from the IN_ANY function block will go into the DB_SELECT_1
basic function block and then onto the OUT_ANY function block.

Connect the function blocks as shown in Figure 7.3a. This will allow us to test the basic
framework. Map the application to DEV1.RES1. Go to RES1, connect the COLD event
output of START to the INIT event input of BUTTON, and run the application. By
entering a link in the Input text box and clicking on the On/Off momentary contact
button, an identical string should appear in the Output text box. This is shown in Figure
7.3b.

Figure 7.3a Framework Connected for Testing

Figure 7.3b Testing Panel for Function Block Framework

 76

Step 2: Creating the DB_SELECT_1 Basic Function Block

Save the system configuration (framework) for DB_Select. In this section we are going
to define a new basic function block called DB_SELECT_1. The procedure for doing so
follows closely that of Tutorial 3, except that the algorithm will be written in Java. This
tutorial will continue with the assumption that Tutorial 3 has been completed. If not, it is
highly recommended that Tutorial 3 should be completed before moving on, as it will
demonstrate step by step how to create a new function block.

At the menu bar, click on File -> New -> FB Type -> Basic FB to create a new Basic
Function Block. Name this function block DB_SELECT_1 and input the proper version
information. For the Compiler Info, define the header as “package fb.rt.rutgers.b1;”. If
such a directory does not exist, either change the name of the directory (e.g. if you wish
to use the student directory already within the FBDK directory, change the header to
package fb.rt.student) or create the sub directories rutgers and b1 within the rt directory.
Before continuing on, make sure to input the proper information also for Compilers.

The DB_SELECT_1 function block will not require INIT and INITO events; it will also
not need the data input QI and the data output QO. First, delete the two data inputs.
Then, click on the execution control chart for the function block and delete the INIT state
and click OK to delete any connections with it. Afterwards, delete the INIT algorithm by
double clicking on the INIT algorithm on the left side of the screen and select Delete.
After completing all of this, delete both the INIT and INITO events.

For the DB_SELECT_1 function block, 5 data inputs and a single data output are
necessary. Go back to the Interface entry and right click on the function block to create a
new data input. All of the data inputs and the data output for DB_SELECT_1 will work
with the data type WSTRING; be sure to define WSTRING as the data type for all data.
Create the first data input and name it DB; this data input will control which database is
being used. Create a second data input, and name it TABLE. This data input will specify
which table in the database the function block will use. Create a third data input named
SELECT_Attribute, which specifies the column in the database table that data will be
retrieved from based on the database query. Create a fourth data input named
WHERE_Attrribute, which specifies the WHERE condition for the database query.
Create the fifth and final data input named INPUT_VAL, which will be similar to the
TC_AGENT data input INPUT from Tutorial 6. For this function block, this data input
will eventually be the value of LINK_ID that will be checked in the Agent database.
Create a data output named OUTPUT_VAL, which will be the value of L_STATUS in
the Agent database. Connect the REQ event with the INPUT_VAL data input and
connect the CNF event with the OUTPUT_VAL data output. The basic function should
now look similar to Figure 7.4.

 77

Figure 7.4 Partially Configured DB_SELECT_1 Function Block

Notice that only one of the data inputs is connected with the REQ event. The other four
data inputs are not connected to the REQ event on purpose. By not connecting the data
with the events, this means the database, table, and SELECT and WHERE constraints
will have to be given during the design of the system. Having to code each exact
constraint in the Java algorithm requires changing the actual Java code, recompiling the
function block, and reloading the system numerous times anytime a change is made.
Instead, by setting up the function block in this way, the user can right click on the data
input, select Connect to assign it a base value (double quotes for WSTRING), and double
click on the resulting double quotes to assign the necessary database name, table, and
SELECT and WHERE constraints. This way, the function block can be run without
having to recompile the Java algorithm or reload the entire system. This, in addition to
the Java algorithm, makes this DB_SELECT_1 function block a database query function
block.

For the execution control chart, the only change that needs to be made is the algorithm.
Set the REQ algorithm to use Java as its language by double clicking on it at the bottom
of the list on the left and selecting Java as its language. Do not put anything into the
REQ algorithm, leave it blank for now. Everything should be completed and the
execution control chart should look like Figure 7.5.

Figure 7.5 Execution Control Chart

Everything that had to be done to configure TC_AGENT function block is now complete.
Save the DB_SELECT_1 function block as a Java file in the directory specified for the
Compiler Info header. While no algorithm has been added yet, the file should be
compiled successfully. Save the DB_SELECT_1 function block as a XML file, and then
exit the function block editor. Open up the function block editor and open the system
configuration DB_Select and insert the DB_SELECT_1 function block into the
workspace (use any name for the function block, here it will be called DBSelect).
Connect the TC_AGENT function block with Input and Output. The framework is now

 78

fully completed; it should look like Figure 7.6. Save the framework and close the
software.

Figure 7.6 Framework with DB_SELECT_1 Basic Function Block

Step 3: Editing the DB_SELECT_1 Algorithm – Part I

When the Java file was saved, it’s saved into the same file path as defined in the package.
To find that file, follow the path C:\ -> fbdk -> lib -> fb -> rt -> rutgers-> b1. Open up
the b1 folder for all file types and you can see the Java file and class for DB_SELECT_1.
Open up the DB_SELECT_1.java file by using Notepad. With Notepad, the Java code
written for the basic function block DB_SELECT_1 can be seen and edited. Notice the
code already in the file. It represents the events, data, and connections programmed for
this function block type. Scroll all the way down to the end of the file and you will find
the following lines, shown in Figure 7.7.

Figure 7.7 Program Code

In between those two brackets is where the code for the REQ algorithm goes. When
creating the basic function block, nothing was put in for the algorithm. At this point, we
can put in our own code and have the function block call other Java files. For reading a
database, there must be a module that actually performs the reading function as well as a
module that controls connections to the Agent database. In addition, the database, its
tables, and the columns in the database will have to be defined as variables given that the
specification for each will come from the function block. To accomplish this, consider
the following list of Java modules called.

 79

DB_SELECT_1.java is the main program which will call:
• A module which will read from a database. To do this, it will call:

• A module which will connect and disconnect the database from the
ReadDB module. That will require:
� The Agent database, that needs to be defined.

The best way to accomplish this is to work from the bottom of the list and up. That way
no important steps such as defining the database are missed. Furthermore, the modules
that will be called in other programs will already be written and have names to be called
by.

Step 4: Connecting to a Variable Database

First, make sure you have a database set up in Access called Agent with a table called
LINK_STATUS. In that table there should be the data given in Figure 7.2. Save it to the
same directory as the DB_SELECT_1.java file. Give it a data source name after saving
it, as done previously in Tutorial 6. If you have done Tutorial 6 previously, you may
already have that database available and with a data source name. Copy the Agent.mdb
file and paste it in the same directory. Then, rename the file Agent2.mdb and define it
with a data source name (see Tutorial 6 for more details). This Agent2 database will be
used for the purposes of testing the DB_SELECT_1 function block later.

In Tutorial 6, in addition to a Java algorithm for TC_AGENT, two modules were also
programmed in Java. For the purposes of this tutorial, we will modify those modules to
make the formerly static attributes involving the use the database variable. Open up
ConnectToDataBase.java, immediately save it as ConnectToDataBaseGen.java (make
sure “All Files” is listed as Save as type in the resulting window or the file will be saved
as a text file instead of a Java file), and close Notepad. This will ensure that the original
file remains unchanged and not cause errors in other programs and function blocks that
use that file. Open up ConnectToDataBaseGen.java in Notepad and add the necessary
code such that the file will open and close connections to a variable database name
(assuming the inputted database name already has a defined data source). The detailed
code for the file ConnectToDataBaseGen.java is listed in section 7.4.A.

Step 5: Modifying SQL to Read from a Variable Database

Now that we have written Java module can connect to any available database based off
its name, we can write a Java module that will use it to read information from that
database. A similar Java module was written for this purpose in Tutorial 6 called
Read.java, so we shall modify it to account for the new variables. Open up Read.java,
save it as ReadDB.java (make sure “All Files” is listed as Save as type in the resulting
window), and close Notepad. Again, this ensures that the contents of Read.java are not
changed and does not affect other programs and function blocks that use it.

Now open up ReadDB.java in Notepad to make the necessary changes to the code. In
this module, it is imperative that the ConnectToDataBaseGen.java module is run first and

 80

connects to the database that the user will define in the DB_SELECT_1 function block.
In addition, the SQL command must be edited to include the new variables. The line that
is equal to String query is in the SQL language. SQL language, among other uses, is
used to retrieve information from a database based on a set of conditions. The original
query selects the table LINK_STATUS and retrieves the value of the column L_STATUS
where the LINK_ID is equal to the inputted integer poll. Whatever poll is equal to, the
program will find that value in the LINK_ID column in the LINK_STATUS table, and
then locate the corresponding value in the L_STATUS column. Originally, the table
name and the names of the columns for the conditions were already defined within the
SQL command. For this function block, those names become variables. Therefore,
modify the command to make the name of the table and the conditions to be variables
that the user will define in the DB_SELECT_1 function block. The detailed code for
ReadDB.java is listed in section 7.4.B.

Step 6: Writing the DB_SELECT_1 REQ algorithm.

Now that the ReadDB.java and ConnectToDataBaseGen.java files are created and in the
same directory as the DB_SELECT_1.java file, now the code can be written for the REQ
algorithm for the DB_SELECT_1 basic function block. Open the DB_SELECT_1
function block and double click on the REQ algorithm at the bottom of the left side of the
screen. A window will pop up with a large, blank text space at the bottom. In this text
space, the Java code for the REQ algorithm will be implemented here. This code must be
written such that it will take the data coming into the function block, call the ReadDB
module, which will call the ConnectToDataBaseGen module, check for the
corresponding for the inputted INPUT_VAL in the column specified by the
WHERE_Attribute, and output the value from SELECT_Attribute to the OUTPUT_VAL
of the function block. All that is necessary to do this is to equate a variable to the
INPUT_VAL.value (the value of the data coming into the INPUT data input), call the
ReadDB module (which will take care of everything but the output), and equate the
OUTPUT.value (the value of the data that will come from the OUTPUT data output)
from a string variable. Make sure that the ReadDB module is called not just with the
value of INPUT_VAL, but also the values of DB, TABLE, SELECT_Attribute, and
WHERE_Attribute. The complete, detailed code for the REQ algorithm of the
DB_SELECT_1 is shown in section 7.4.C.

Save the DB_SELECT_1.java file and the file will automatically be compiled. If there
are any errors in either of the two modules, go back to Notepad, fix them, and recompile
them. If the error is with the code specifically for the REQ algorithm, double click on the
REQ algorithm and fix the errors in the text space available. If there are no errors, save
DB_SELECT_1 as a XML file, close the program, open up the program again, and load
the DB_Select system configuration. The program needs to be closed so that the
DB_SELECT_1 function block in the system will work with the most recent compiled
Java class file. Click on RES1 to bring up the framework in the resource, and right click
on the data inputs DB, TABLE, SELECT_Attribute, and WHERE_Attribute separately
and connect them with double quotes. Double click on each set of double quotes to
define the parameters. When finished, the function block should look like Figure 7.8.

 81

Figure 7.8 Fully Configured DB_SELECT_1 Function Block in Framework

When finished defining each parameter, save the system configuration, and launch the
program. Type in a LINK_ID such as 12 or 14, click on the On/Off button, and check the
resulting value with the values in the Agent database. If they match, then the
DB_SELECT_1 function block and the program work properly. To further test it, close
the Java pop-up window (not the function block editor) and open up Agent2 (which we
defined earlier) in Access and give some new numeric values to L_STATUS. Go back to
the resource RES1 in the function block editor, double click on the string next to DB to
redefine the parameter, and change the parameter to “Agent2.” Launch the program
again and input different LINK_ID values for various resulting outputs. If it works
properly, the outputs from the user-inputted LINK_ID should match with the L_STATUS
values for each LINK_ID in the Agent2 database.

7.3 Summary

This tutorial has shown the following sequential steps for designing and using a database
query function block. To create a database query function block:

1. Set up a system as a framework for the function block.
2. Create a new basic function block and define its compiler information.
3. Define the interface of the composite function blocks: events, data inputs, and

data outputs.
4. Connect data inputs and outputs with corresponding events. Be sure not to

link events to data inputs that the user will have to configure.
5. Make sure the Execution Control Chart has all the necessary states and

transitions. Especially make sure that the algorithm for the event is defined as
Java.

6. Save the function block as Java, compile it, and then save it as XML.
7. Insert this function block into the system framework. Save the framework and

close the program.
8. Write the necessary Java modules that the function block will call. Be sure to

make the name of the database, the table, and the conditions variable since the
user will specify that in the function block.

9. Make sure that any databases that can/will be used have a defined data source.

 82

10. Open up the program and the function block, double click on the algorithm
name, and implement the Java code for that specific algorithm.

11. Save the function block as a Java file, where the Java file will automatically
be compiled. If there are no errors, save the function block again as an XML
file. Close the program, and then open it again and load the system
configuration.

12. Before launching the program, configure the function block with the name of
the database to be used, the name of the table that will be used, and the names
of the columns to check for and retrieve data from.

EXERCISE: The DB_SELECT_1 function block retrieves information from a user
defined database. It is possible, however, to update a database in the same way.
Defining a database, table, and conditions to be used is done exactly the same way it was
done in this tutorial. However, additional inputs and a new SQL command are necessary
for updating a database. Create a new function block called DB_UPDATE_1 and write
or edit the necessary Java algorithms and modules to accomplish this task. (Note: The
answer to this exercise, complete with Java code, is in section 7.4.D.)

EXERCISE: The DB_SELECT_1 function block only returns one value from a column
in a user defined database. However, it is possible to select and return more than one
value in an SQL query. SQL queries can be modified to select information from more
than one column. In addition, the WHERE condition in an SQL query does not have to
be a value of a column. An entire SQL query for that WHERE condition, a sub-query,
can further specify the constraint. Create a new function block called
DB_NEST_1_SELECT_3 and write or edit the necessary Java algorithms and modules
so that the function block can accomplish the following: 1) return 3 values from 3
separate columns and 2) instead of a solitary where value, implement a sub-query in its
place. Be sure to have the SQL query select all three columns at one time. Also, the
sub-query only needs to have one value for the WHERE condition. (Note: The answer to
this exercise, complete with Java code, is in section 7.4.E.)

 83

7.4.A Code for the Module ConnectToDataBaseGen.java

package fb.rt.rutgers.b1;
import java.sql.*;
import java.util.*;

public class ConnectToDataBaseGen{
 private String db = new String();
 protected Connection connection;
 public ConnectToDataBaseGen(String dbName){
 db = dbName;
 }
 public void openConnection(){
 try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 String url ="jdbc:odbc:" + db;
 connection = DriverManager.getConnection(url);
 }
 catch(ClassNotFoundException cnfe){
 System.err.println(cnfe);
 }
 catch(SQLException sqle){
 System.err.println(sqle);
 }
 }
 public void closeConnection(){
 if(connection != null)
 try{
 connection.close();
 connection = null;
 }
 catch(SQLException sqle){
 System.err.println(sqle);
 }
 }
}

 84

7.4.B Code for the Module ReadDB.java

package fb.rt.rutgers.b1;
import java.sql.*;
import java.util.*;

class ReadDB extends ConnectToDataBaseGen{
 public ReadDB(String dbName){
 super(dbName);
 }
 public String read_database(int poll, String Table, String Select, String Where){
 try{
 openConnection();
 Statement statement = connection.createStatement();
 String query = "SELECT " + Select + " FROM " + Table + "
WHERE " + Where + "=" + poll;
 ResultSet rs = statement.executeQuery(query);
 if(rs.next()){
 String result = rs.getString(Select);
 closeConnection();
 return result;
 }
 else{
 return null;
 }
 }
 catch(SQLException sqle){
 System.err.println(sqle);
 return null;
 }
 }
}

 85

7.4.C Code for the Function Block DB_SELECT_1.java

 int in = 0;
 String Table;
 String Select;
 String Where;
 try{
 in = Integer.parseInt(""+INPUT_VAL.value);
 }
 catch(NumberFormatException e){
 System.err.println(e);
 }
 Table = TABLE.value;
 Select = SELECT_Attribute.value;
 Where = WHERE_Attribute.value;
 ReadDB readDB = new ReadDB(""+DB.value);
 try{
 String out = readDB.read_database(in, Table, Select, Where);
 OUTPUT_VAL.value = out;
 CNF.serviceEvent(this);
 }
 catch(NumberFormatException e){
 System.err.println(e);
 }

 86

7.4.D DB_UPDATE_1 Interface & Java Code

Figure 7.9 Interface of DB_UPDATE_1 Function Block

The DB_UPDATE_1 function block uses the file ConnectToDataBaseGen.java, detailed
in section 7.4.A. It uses its own Java module called WriteDB. The WriteDB.java code
is as follows:

package fb.rt.rutgers.b1;
import java.sql.*;
import java.util.*;

class WriteDB extends ConnectToDataBaseGen{
 public WriteDB(String dbName){
 super(dbName);
 }
 public String write_database(int in1, int in2, String Table, String Update, String
Where){
 try{
 openConnection();
 Statement statement = connection.createStatement();
 String update = "UPDATE " + Table + " SET " + Update + " = " +
in1 + " WHERE " + Where + "=" + in2;
 statement.executeUpdate(update);
 closeConnection();
 String OK = "OK";
 return OK;
 }
 catch(SQLException sqle){
 System.err.println(sqle);
 return null;
 }
 }
}

 87

The Java algorithm for the REQ state (the only non-initial state needed) of the
DB_UPDATE_1 function block uses the WriteDB Java module and is shown below.
This code is to be entered in the text space for the REQ algorithm (the only algorithm
needed) in the DB_UPDATE_1 function block.

int in1 = 0; //Input
 int in2 = 0; //Update
 String Table;
 String Update;
 String Where;
 try{
 in1 = Integer.parseInt(""+INPUT_VAL.value);
 }
 catch(NumberFormatException e){
 System.err.println(e);
 }
 try{
 in2 = Integer.parseInt(""+WHERE_VAL.value);
 }
 catch(NumberFormatException e){
 System.err.println(e);
 }
 Table = TABLE.value;
 Update = UPDATE_Attribute.value;
 Where = WHERE_Attribute.value;
 WriteDB writeDB = new WriteDB(""+DB.value);
 try{
 String out = writeDB.write_database(in1, in2, Table, Update, Where);
 CNF.serviceEvent(this);
 }
 catch(NumberFormatException e){
 System.err.println(e);
 }

 88

7.4.E DB_NEST_1_SELECT_3 Interface & Java Code

Figure 7.10 Interface of DB_NEST_1_SELECT_3 Function Block

The DB_NEST_1_SELECT_3 function block uses the file ConnectToDataBaseGen.java,
detailed in section 7.4.A. It uses its own Java module called NestReadDB3. The
NestReadDB3.java code is as follows:

package fb.rt.rutgers.b1;
import java.sql.*;
import java.util.*;

class NestReadDB3 extends ConnectToDataBaseGen{
 public NestReadDB3(String dbName){
 super(dbName);
System.out.println(dbName);
 }
 public String[] read_database(String Select1, String Select2, String Select3, String
Table, String WhereAtt, String NestSelect, String NestTable, String NestSelFunction,
String NestWhereAtt, String NestWhereCond, String NestWhereValS){
 String [] Array = new String[3];
 try{
 openConnection();
 Statement statement = connection.createStatement();
 String query = "SELECT " + Select1 + ", " + Select2 + ", " +
Select3 + " FROM " + Table + " WHERE " + WhereAtt + " IN (SELECT " +
NestSelFunction + "(" + NestSelect + ") FROM " + NestTable + " WHERE " +
NestWhereAtt + " " + NestWhereCond + " " + NestWhereValS + ")";
System.out.println(query);
 ResultSet rs = statement.executeQuery(query);

 89

 if(rs.next()){
 String result1 = rs.getString(Select1);
 String result2 = rs.getString(Select2);
 String result3 = rs.getString(Select3);
 Array[0] = result1;
 Array[1] = result2;
 Array[2] = result3;
 closeConnection();
 return Array;
 }
 else{
 Array[0] = "null";
 Array[1] = "null";
 Array[2] = "null";
 return Array;
 }
 }
 catch(SQLException sqle){
 System.err.println(sqle);
 Array[0] = "null";
 Array[1] = "null";
 Array[2] = "null";
 return Array;
 }
 }
}

 90

The Java algorithm for the REQ state (the only non-initial state needed) of the
DB_NEST_1_SELECT_3 function block uses the NestReadDB3 Java module and is
shown below. This code is to be entered in the text space for the REQ algorithm (the
only algorithm needed) in the DB_NEST_1_SELECT_3 function block.

String Select1;
 String Select2;
 String Select3;
 String Table;
 String WhereAtt;
 String NestSelect;
 String NestTable;
 String NestSelFunction;
 String NestWhereAtt;
 String NestWhereCond;
 String NestWhereVal;
 Select1 = SELECT_Att1.value;
 Select2 = SELECT_Att2.value;
 Select3 = SELECT_Att3.value;
 Table = TABLE.value;
 WhereAtt = WHERE_Att.value;
 NestSelect = NEST_SELECT_Att.value;
 NestTable = NEST_TABLE.value;
 NestSelFunction = NEST_SELECT_Function.value;
 NestWhereAtt = NEST_WHERE_Att.value;
 NestWhereCond = NEST_WHERE_Cond.value;
 NestWhereVal = NEST_WHERE_Val.value;
 String NestWhereValS = "\'" + NestWhereVal + "\'";
 NestReadDB3 nestreadDB3 = new NestReadDB3("" + DB.value);
 String[] out = nestreadDB3.read_database(Select1, Select2, Select3, Table,
WhereAtt, NestSelect, NestTable, NestSelFunction, NestWhereAtt, NestWhereCond,
NestWhereValS);
 String SelectVal1 = out[0];
 String SelectVal2 = out[1];
 String SelectVal3 = out[2];
 if(SelectVal1.equals("null") || SelectVal2.equals("null") ||
SelectVal3.equals("null")){
 SELECT_Val1.value = "null";
 SELECT_Val2.value = "null";
 SELECT_Val3.value = "null";
 ERROR_TRAP.value = true;
 }
 else{
 SELECT_Val1.value = SelectVal1;
 SELECT_Val2.value = SelectVal2;
 SELECT_Val3.value = SelectVal3;

 91

 ERROR_TRAP.value = false;
}

 92

	John Fischer and Thomas O. Boucher
	Figure 1. Components in a distributed control process
	Figure 2. A device with three resources and three applications
	PAGE
	Figure 1.2 Function Block Editor
	Figure 1.3a Default Screen
	Figure 1.3b New System Screen
	
	Figure 1.6 Programming Devices

	IEC TUTORIAL 4: PUBLISH AND SUBSCRIBE FUNCTION BLOCKS

