The OPC Foundation Interface specification based on Web Services

The OPC Foundation has published a series of widely successful automation industry interface standards based on Microsoft COM (Component Object Model). COM is an implementation of what is generically called an RPC (Remote Procedure Call) mechanism. RPC lets a programmer make a function call to another process running on the same computer or to a process running on a different computer over a network (LAN, WAN or Internet). In theory, RPC makes communicating outside a single process as easy as calling an in-process function by hiding all of the lower level protocol details.

The OPC COM interfaces have largely achieved their intended goal of providing an industry standard RPC mechanism that makes it easy for programmers to acquire factory process data from a variety of OPC servers written by numerous vendors. The Microsoft COM underpinnings work well on Microsoft operating systems and on a LAN when connecting multiple Microsoft computers.

Although Microsoft COM and some OPC interfaces have been ported to other platforms, COM remains largely Microsoft-centric. There have been many other viable binary RPC implementations like CORBA on UNIX and Java RMI but, like COM, they lack universal cross-platform acceptance. OPC has chosen not to develop standards based on any of these RPC platforms. However, what if there were an RPC standard that was universally accepted and layered on existing widely adopted Internet standards? If such a standard existed, OPC should support it. Enter Web Services...

Popularity of Internet and HTML

Web Services are a new RPC mechanism optimised for use over the Internet. In fact, they are layered upon existing lower level Internet standards, thus ensuring their quick acceptance in the existing Internet infrastructure. Let's look at the familiar HTML and HTTP standards. HTML is the tagged text mark-up language used to describe web pages. This standard was quickly adopted because of its simple syntax and easy human readability (at least for programmers!). The tags in HTML are used to describe how the text on the web page is to be visualised. For instance, which text is bold, where the paragraphs start and end, the size and type of font etc. See Fig 1.

<html>
 <head>
 <title>Hello World Page</title>
 </head>
 <body>
 <h1 align="center">Hello World Page</h1>
 <p>This is a simple Hello World page.</p>
 <p>To show sample HTML.</p>
 </body>
</html>

Fig 1 - HTML for a simple Hello World Web page
HTTP is the simple transport protocol built on top of TCP/IP for transferring HTML web pages from a web server to a web browser for rendering. Realising the world of HTML/HTTP is already cross-platform and universally accepted, it would be nice to have a complementary RPC mechanism with the same appeal.

XML (eXtensible Mark-up Language) is a mark-up language like HTML, but in which the tags are used to describe the data contained in an XML document rather than to describe a web page layout. In HTML, the set of tags are well known and fixed. You can't just decide to add a new tag to an HTML page and expect all of the browsers to understand what to do with it. The real power of XML is the ability to add new tags at will and describe the new tags and their meaning in a definition language, the XML Schema.

<EMPLOYEE>
 <NAME>
 <FIRST>John</FIRST>
 <MIDDLE>Q</MIDDLE>
 <LAST>Public</LAST>
 </NAME>
 <EMAIL>john.q.public.1@gsfc.nasa.gov</EMAIL>
 <PHONE>301-286-aaaa</PHONE>
 <FAX>301-286-bbbb</FAX>
 <LOCATION>
 <BUILDING>Bldg. 23</BUILDING>
 <ROOM>999</ROOM>
 </LOCATION>
 <ADDRESS>
 <ORG>NASA</ORG>
 <CENTER> Goddard Space Flight Center </CENTER>
 <MAILSTOP>588.0</MAILSTOP>
 <CITY>Greenbelt</CITY>
 <STATE>MD</STATE>
 <ZIP>20221</ZIP>
 </ADDRESS>
</EMPLOYEE>

Fig 2 - Employee record encoded in XML
Fig 2 shows a hypothetical employee record encoded in XML. Notice that each tag is defined by the author of the schema, not by XML itself. Thus with XML we can write other more specialised dialects of XML to suit a specific purpose.

Suppose that I were to write a specialised dialect for the purpose of describing methods, functions and data used in RPC? Well, some folks got together and did exactly that and created SOAP (Simple Object Access Protocol). SOAP is now a W3C (World Wide Web Consortium) recommended standard. Individuals or organisations like OPC will, using the SOAP schema and rules as a base, create specific XML schema that define the data types, structures, procedures and functions that comprise their specific RPC interface. (The resulting schema is analogous to the IDL file defined for COM programming).

Fig 3 shows the SOAP encoding for the GetLastTradePrice method of a simple stock quote web service.

<SQ:Envelope>
xmlns:SQ="http://schemas.xmlsoap.org/soap/envelope/"
SQ:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 <SQ:Body>
 <M:GetLastTradePrice xmlns:m="Some-Namespace-URL">
 <symbol>DIS</symbol>
 </M:GetLastTradePrice>
 </SQ:Body>
</SQ:Envelope>

Fig 3 - SOAP encoding of a stock Quote Web Service
Now that we have a way to describe our RPC interface, next we need a way to describe how to communicate with it. SOAP does not specify a specific transport protocol. We need yet another XML schema to define the endpoints for our transfer. For this we create an XML document conforming to WSDL (Web Services Description Language), a W3C (World Wide Web Consortium) initiative. We will take the schema defined for our RPC interface and place it in our WSDL document along with the specific WSDL entries that define the transport and the location of the service. The WSDL file then becomes the contract between the service and the remote caller. Everything a caller needs is described directly in, or is referenced by, the WSDL file. The most common transport protocol used with Web Services is HTTP. Any HTTP server that can serve up HTML pages can transfer the XML documents that form the payload of our RPC interface just as easily.

Requirements for supporting Web Services

One of the advantages of Web Services is the low entry barrier in using or consuming them. Since all programming languages/platforms can read and write text, and hence, read and write our XML documents, this requirement is universally fulfilled. To host a Web Service that communicates via HTTP, all it requires is an HTTP server. Thus you might say that the true minimum requirements for both an HTTP Web Service and a client of the Web Service is a TCP/IP stack!

This minimal requirement makes Web Services inherently cross-platform and particularly relevant in the industrial automation market where it may be desirable to embed an OPC Web Service into a field device like a PLC.

Just because you can create and consume Web Services starting with nothing more than a TCP/IP stack, that doesn't mean you want to. The use of an XML parser eases the task of creating and parsing the XML documents. XML parsers are common on many platforms these days, but that is still a very low level at which to work compared to a modern RPC mechanism like COM.

A real RPC mechanism hides all the low level details and lets the programmer write functions that will be called from remote clients. In turn it allows remote clients to make what look like ordinary internal function calls that in fact get transferred and executed on the remote machine. The need in this case is for smart high level programmer tools that can build all the underlying SOAP documents automatically and make the HTTP request, yet completely hide this from the programmer. The programmer should see nothing more than the desired high level function calls.

Microsoft's Visual Studio.NET is one such tool that can read a WSDL file (the contract for a Web service) and create either a server stub (a server with the functions all prototyped but not implemented) or a client proxy (a class with functions that, when called, will execute on the remote machine). With this rich RPC environment, OPC programmers can continue to work at the high level they have been accustomed to when using COM.

Microsoft is not the only tool vendor with high-level support for web services. Borland, IBM, IONA, Sun, Oracle and many others are committed to making interoperable Web Services a reality. These and other software vendors have joined to form the Web Services Interoperability Organization (http://www.ws-i.org) to promote this technology.

The current computer industry buzz around Web Services always revolves around scenarios where multiple web servers from different companies communicate with each other over the public Internet. Exposing factory data to the public Internet within the industrial automation application space may be highly undesirable in some cases. This does not make Web Services a poor choice for internal applications since any web server can be easily isolated from the public Internet, only allowing local communication through the internal network (intranet).

OPC XML-DA Web Service

Method Description:

· Browse Queries the hierarchical namespace of the server for the names of all of the available items (tags).

· GetProperties Returns extra information associated with one or more item.

· GetStatus Returns info about the server. Version information, current mode, overall health etc.

· Read Returns the value quality and timestamp for one or more items.

· Subscribe Indicates a list of items for which the client wants continuous updates.

· SubscriptionCancel Removes a list of items indicated in a previous call to Subscribe.

· SubscriptionPolledRefresh Returns all items indicated in a subscription that have changed since the previous call to SubscriptionPolledRefresh.

· Write Writes new values to one or more items.

	Method
	Description

	Browse
	Queries the hierarchical namespace of the server for the names of all the available items (tags).

	GetProperties
	Returns extra information associated with one or more item.

	GetStatus
	Returns info about the server, version information, current mode, overall health etc.

	Read
	Returns the value quality and timestamp for one or more items.

	Subscribe
	Indicates a list of items for which the client wants continuous updates.

	SubscriptionCancel
	Removes a list of items indicated in a previous call to Subscribe

	SubscriptionPolledRefresh
	Returns all items indicated in a subscription that have changed since the previous call to SubscriptionPolledRefresh.

	Write
	Writes new values to one or more items.

	

Fig 4 - OPC XML-DA methods
The first Web Services specification from OPC is XML-DA. This specification closely parallels the ever popular COM Data Access Specification. The Data Access interface is used to read and write data values from typical automation devices like programmable logic controllers, process controllers and DCS systems. The methods defined in the XML-DA Specification are shown in Fig 4. Read example. Here is the prototype of the Read method in C#. This is what the programmer sees in his code:

0public ReplyBase Read(RequestOptions Options,
 ReadRequestItemList [] ItemList,
 out ReplyItemList [] RItemList,
 out OPCError [] Errors)

Fig 5 and Fig 6 show example SOAP messages that are created behind the scenes for a call to and the response from the Read method above.

Optimised for Web Services

Although the advanced Web Services tools take great pains to make our Web Services RPC function calls look just like calls to local procedures, there are major practical differences between RPC calls and local calls. There are even significant differences between Web Services calls and COM/DCOM calls. The client and server in COM/DCOM are considered closely coupled (the connection remains established for the lifetime of the endpoints) and COM provides a convenient callback facility whereby once a connection is established, the server can make unsolicited calls to the client (callbacks). The great efficiency of OPC over COM is due to this callback mechanism where clients are sent data from the server only when the server has detected that there has been a significant change in the value (report by exception).

In contrast, Web Services clients and servers are loosely coupled (there is no persistent connection between the client and the server). Even more problematic is the lack of a practical callback mechanism for servers to report changed data to the clients in an efficient way. To retain the efficiency of the report-by-exception subscription callback model used in COM, OPC had to invent a new "pseudo-callback" whereby a client makes a request to the server to return its latest values, but the server is allowed to wait before returning the data to the client in order to reduce the number of round-trips between the client and server - and to pack more data into each call.

<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soap:Body>
 <Read xmlns="http://opcfoundation.org/webservices/OPCDA/">
 <Options ReturnDiagnosticInfo="false"
 ReturnItemName="true"
 ReturnItemPath="true"
 RequestTimeout="2002-04-29T10:30:44.9618750+02:00"
 ClientRequestHandle="ReadReals"
 LocaleID="en-US" />
 <ItemList>
 <Items ItemPath="/Reals" ItemName="Float"
 ClientItemHandle="Float" />
 <Items ItemPath="/Reals" ItemName="Double"
 ClientItemHandle="Double" />
 <Items ItemPath="/Reals" ItemName="Decimal"
 ClientItemHandle="Decimal" />
 </ItemList>
 </Read>
 </soap:Body>
</soap:Envelope>

Figure 5 - SOAP Message for Read Request
<ReadResponse xmlns="http://opcfoundation.org/webservices/OPCDA/">
 <ReadResult rcvtime="2002-04-29T10:25:44.0712500+02:00"
 ReplyTime="2002-04-29T10:25:44.0868750+02:00"
 ClientRequestHandle="ReadReals" revisedlocaleid="en"
 ServerState="running"/>
 <RItemList>
 <Items ItemPath="/Reals" itemname="Float"
 ClientItemHandle="Float" valuetype="xsd:float"
 TimeStamp="2002-04-29T10:25:44.9618750+02:00">
 <Value xsi:type="xsd:float">0.7460189</Value>
 </Items>
 <Items ItemPath="/Reals" itemname="Double"
 ClientItemHandle="Double" valuetype="xsd:double"
 TimeStamp="2002-04-29T10:25:44.1962500+02:00">
 <Value xsi:type="xsd:double">0.76167851666195308</Value>
 </Items>
 <Items ItemPath="/Reals" itemname="Decimal"
 ClientItemHandle="Decimal" valuetype="xsd:decimal"
 TimeStamp="2002-04-29T10:25:44.9618750+02:00">
 <Value xsi:type="xsd:decimal">0.746018909356237</Value>
 </Items>
 </RItemList>
</ReadResponse>

Figure 6 - SOAP Message for Read Response
Likely applications

With a brand new interface based on advanced Web Services technology, it could be years before enough XML-DA Servers are created and brought to market to declare the interface a success. Fortunately, the XML-DA interfaces parallel the existing COM-DA interfaces quite closely, not only to ease the learning curve of the developer, but also to make it relatively easy to write a middleware XML-DA server that connects to underlying COM-DA servers. It will only take one such XML-DA server to elevate the thousands of existing COM-DA servers to the world of Web Services. The XML-DA interface achieves the following goals:

· Cross Platform - Web Services are the most promising cross platform RPC mechanism yet.

· Internet friendly - Based on Internet transport protocols, Web Services can operate over the Internet or intranet in many cases where DCOM cannot.

· Backward compatible - By exposing similar functionality as the COM-DA version, all existing COM-DA servers can be exposed via XML-DA.

The OPC Web Services technology could be substituted for the existing OPC COM services in most applications, but here are a few example products and applications where Web Services extends OPC to places COM typically cannot go:

· OPC Enabled Field Device - The embedded kernels found in field devices usually lack COM support, but increasingly they do support TCP/IP and web server software. A vendor of a field device could build in a web server to provide a browser interface for configuration and diagnostics. By adding an OPC XML-DA Web Service, the device can also provide efficient process data transfer to XML-DA client applications.

· Internet-based HMI - A vendor of HMI software could extend their software to work over the Internet. In practice existing COM interfaces do not work well on the Internet since most firewalls filter out COM traffic. The vendor can build in the XML-DA client interface and can now connect to XML-DA servers over the Internet.

· Non-Microsoft IT Enterprise Client - Many enterprise applications like ERP and MES run on non-Microsoft platforms where it is difficult or impossible to make COM connections. Enterprise applications are already making heavy use of XML technology as a way to adapt data from disparate sources. Integrating live factory data via XML-DA would be an ideal solution for these vendors.

OPC COM lives on!

With all of these new advantages of Web Services, you may think that the existing OPC applications will quickly drop COM and use Web Services instead. The truth is that the current raw performance of DCOM is orders of magnitude faster than Web Services. On a factory LAN, the domain of most existing OPC applications, DCOM works well. For many applications speed, throughput and efficiency do matter. For this reason I expect most OPC applications will retain the COM interface and add the Web Services interface, rather than drop COM in favour of Web Services.

XML-DA represents only the first OPC interface to get the Web Services makeover. In the coming months, the remaining OPC COM interfaces, Alarms & Events and Historical Data Access (HDA) for instance, will be redesigned with a Web Services interface. New initiatives like Data eXchange (DX) will be designed from the start with both COM and Web Services interfaces.

PAGE
6

