5th International Workshop on Network on Chip Architectures (NoCArc 2012)

Position-Based Weighted Round-Robin Arbitration for Equality of Service in Many-Core Network-on-Chips

Hanmin Park and Kiyoung Choi Seoul National University

Hot-spot traffic

Input buffer utilization

Avg. latency vs. offered traffic

(xy routing and round-robin arbitration are used.)

Position-Based Weighted RR Arbitration for EoS in Many-Core NoCs

EoS with hot-spot traffic

Accepted Throughput vs. offered traffic

Accepted throughput distributions

(When the offered traffic is 1.00.)

EoS with hot-spot traffic

Accepted throughput

distributions

Accepted Throughput vs. offered traffic

Previous work

- Large-scale computer networks Generalized processor sharing, fair queuing, etc.
- D. Abts and D. Weisser, "Age-Based Packet <u>Arbitration</u> in Large-Radix k-ary n-cubes," in *Supercomputing*, 2007.
- M. M. Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee, "Probabilistic Distance-based <u>Arbitration</u>: Providing EoS for Many-core CMPs," in *MICRO*, 2010.

The main section:

POSITION-BASED WEIGHTED ROUND-ROBIN ARBITRATION

Motivation

Probabilistic Distance-Based Arbitration (MICRO-43)

Linear weight (hop count)?

 \uparrow 8-ary 1-mesh, P_7 is the common destination.

Motivation

2/3

(a) The case of the east output port of R_1 .

Position-Based Weighted RR Arbitration for EoS in Many-Core NoCs

Arbitration algorithm design

Position-Based Weighted Round-Robin Arbitration

- 1. Count the number of nodes to be served by each input port.
- 2. Output port arbitration.

Extension to (8×8) 2D meshes

1. Count the number of nodes to be served by each input port.

(a) xy routing algorithm

(b)	yх	routing	a	lgorithm
-----	----	---------	---	----------

Extension to (8×8) 2D meshes

Hardware implementation

William James Dally and Brian Towles, *Principles and practices of interconnection networks*, Morgan Kaufmann, 2004.

December 1, 2012 Position-Based Weighted RR Arbitration for EoS in Many-Core NoCs

Hardware implementation

Second stage arbitration

<i>R</i> ₀₃	<i>R</i> ₁₃	R ₂₃	R ₃₃
<i>R</i> ₀₂	R ₁₂	R	R ₃₂
<i>R</i> ₀₁	<i>R</i> ₁₁	$\mathbf{M}_{R_{21}}$	<i>R</i> ₃₁
<i>R</i> ₀₀	<i>R</i> ₁₀	<i>R</i> [♥] ₂₀	<i>R</i> ₃₀

Two-stage arbitration

- Active input port
- Inactive input port

Weights of input ports

• LNEWS = 1:4:1:2:8

Refresh cycle (South output port)

• 1 + 4 + 1 + 2 = 8

	Condition	Action
First stage	$\exists req: counter(req) \neq 0$	$Masked \rightarrow counter(req) = 0$
Second stage	$\forall req: counter(req) = 0$	$Masked \rightarrow counter(req) \neq 0$

Hardware implementation

Probabilistic Distance-Based Arbitration (MICRO-43)

Geometric weight

$$w = C_x^{h_x} \times C_y^{h_y},$$

where h_i 's are hop counts and C_i 's are contention degrees ($i \in \{x, y\}$).

Hardware implementation

Throughput distribution & Effects on other traffic patterns

EXPERIMENTAL RESULTS

Experimental results

Accepted throughput – One hot-spot

Round-robin

Position-based

Experimental results

Accepted throughput – Two hot-spots

Round-robin

Position-based

Experimental results

Accepted throughput – Four hot-spots

Experimental results

Latency-throughput curve – Synthetic traffics

Position-Based Weighted RR Arbitration for EoS in Many-Core NoCs

Conclusion

- Position-based weighted round-robin arbitration is proposed for EoS in many-core NoCs.
- It is shown that the deterministic characteristics of NoC can be exploited to provide EoS with simple weighted round-robin method.
- Optimized to the hot-spot traffic, the proposed arbitration scheme does not degrade much against other traffic patterns.

Q & A THANK YOU

December 1, 2012 Position-Based Weighted RR Arbitration for EoS in Many-Core NoCs

Appendix

BACKUP SLIDES

Read operation

From (7,7) to the other nodes

• No contention - e.g. (5,7) $p_{in}^{east} \rightarrow p_{out}^{west}$ and $p_{in}^{east} \rightarrow p_{out}^{south}$ - e.g. (5,5) $p_{in}^{north} \rightarrow p_{out}^{south}$

- No saturation
 - Only one node is sending packets.

Experimental results

Latency-throughput curve — Hot-spot traffic

