

Surface Wave Communication System for On-chip and Off-Chip System Interconnects

Ammar Karkar¹, Kenneth Tong², Ra'ed Al-Dujaily¹ , Alex Yakovlev¹ and Terrence Mak³

(1)Newcastle University, (2) University College London, (3)The Chinese University of Hong Kong

- Introduction
- Surface wave
- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion

Introduction

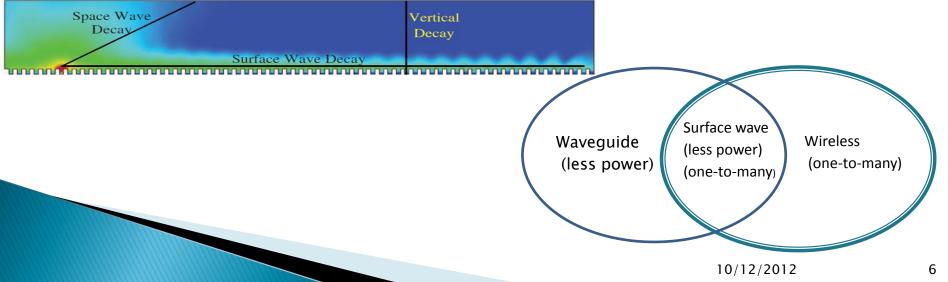
- Surface wave
- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion

Introduction

- Scalability is the issue:
 - System-on-chip
 - Network-on-chip
 - Global communication
 - Alternative communication fabric

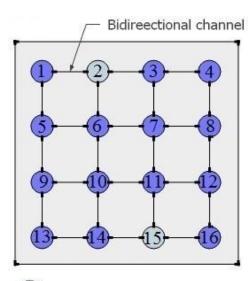
Introduction

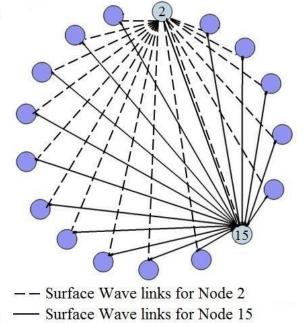
Surface wave


- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion

Zenneck Surface Wave

- Why surface wave :
 - Lower cost to implement:
 - Does not require non-CMOS devices to be integrated (e.g. Optical Interconnect)
 - less industrial challenges(e.g. 3D technology)
 - Consume less power than wireless RF
 - Provide one-to-many communication unlike(RF waveguide transmission lines)


- Introduction
- Surface wave
- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion

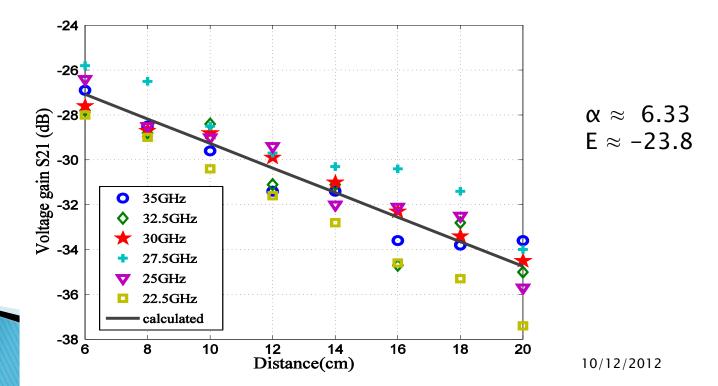


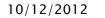
Hybrid Architecture

- Shared media and limited number of frequency channels
- wire based local communication:
 - scale well with technology
 - cheapest implementation cost
- Hybrid multilayer Network:

Node with TxRx (Master) Node with only Rx (Slave)

- Introduction
- Surface wave
- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion


(1)


(2)

Analysis of link power dissipation

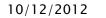
- Proposed surface acts as wave guide of the propagated signal:
 - $|V^+|_d = |V^+|_0 e^{-\alpha d}$

$$\circ \quad S_{21} = E + 20 \log e^{-\alpha d}$$

Outline

Newcastle Jniversity

- Introduction
- Surface wave
- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion



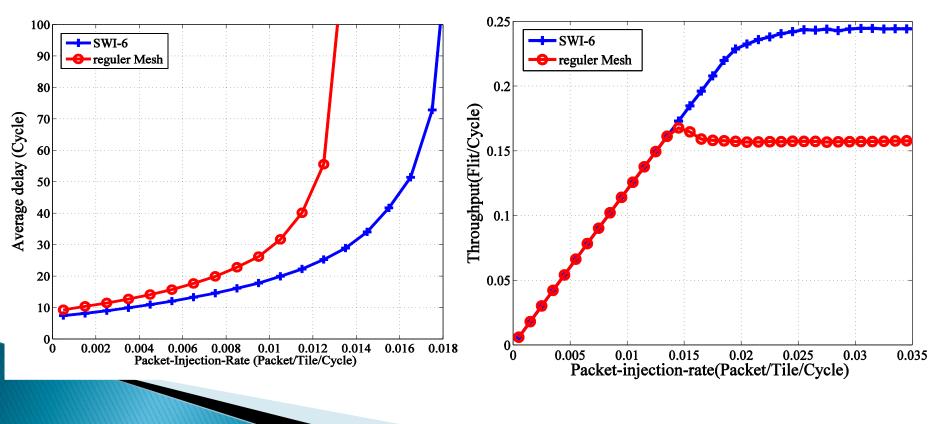
• Area overhead consideration for the proposed Interconnect fabric

NoC component	Baseline Architecture	SWI Hybrid Architecture (proposed)	RF-I with transmission line
Router (mm ²)	1.08533	1.51237	1.51237
RF circuit (mm ²)	-	0.408	0.463
Link (mm ²)	-	-	0.17152
active area overhead rate to baseline arch.(% of total die)		2.29%	2.3%

Outline

Newcastle

- Introduction
- Surface wave
- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion

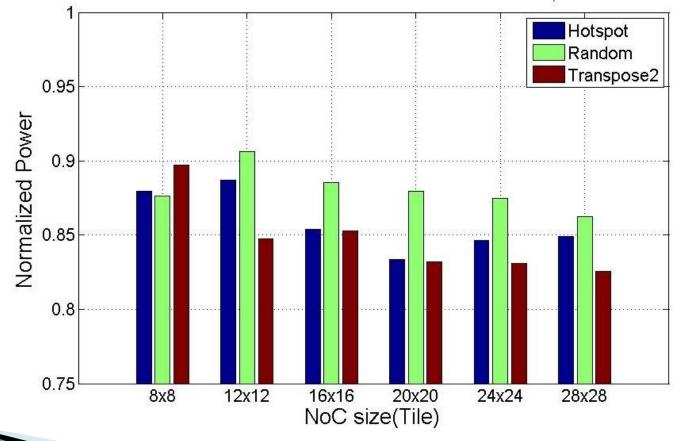


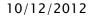
 6×4 Network average delay vs. PIR for Hybrid and Baseline Architecture

 6×4 Network Throughput vs. PIR for Hybrid and Baseline Architecture



Performance results


 Hybrid-Arch. PIR and throughput improvement over Baseline Arch. At the edge of Network Saturation



 Normalized Power consumption vs. Baseline architecture for Different NoC size, traffic

- Introduction
- Surface wave
- Hybrid architecture
- Analysis of link power dissipation
- Area estimation
- Preliminary results
- Conclusion

Conclusion and Future Work

- Scalability issues in global communication
- Hybrid architecture (metal and SWI for local and global Communication, respectively)
- Significant potential of the proposed architecture to mitigate these issues with relatively small area penalty
- Future work includes developing an optimized topology on design time or on the fly, as well as, investigating 1-to-M/M-to-1 traffic pattern for this fabric.

THANK YOU

