The Era of Many-Module SoC:

Revisiting the NoC Mapping Problem

B rovsiung

Isask’har (

Zigi) Wi

alte

Techni

r, Israel Cidon, Avinoam Kolodny, Danie

el

on — Israel Institute of Technology

December, 2009

Sigalov

SoC Revolution

Bus-based system NoC-based system

SoC Evolution

i Processor Evolution

N\

Dual Core

I I 1

4

ingle Core

i The Era of Many-Module SoC

= How would such chips be like?
High Certainty

Large number
é.
of modules

NoC _,
Interconnect

= Most likely
= Power still important
= Highly parallel

=]P reuse Totally unknown
. Ease of design and verification

< Applications

ﬁ Future SoCs - Observation#1

= Special purpose cores replace general

PUrPOSE Processors

= Power considerations
||#

.% m-

= Processing pipes are getting longer

i Future SoCs - Observation#2

EIROOIE
_IS@ D EDEE
5l @)= ElE
EEIE S OEIE

Oin BED

-':‘ R—R. \.n

EEEEECE
EREON

= Large diversity

= All modules are unique

= Highly regu
= Classes of Replicated cores

= standard modules (DSP, HW
accelerators, Cache banks,
etc.)

ar

i The Era of Many-Module SoC
Oé&
= Increased use of specialized cores %

%y,
= Pipes are getting longer 4
Oé@@
= Replication of processing elements %o%
e

= How is the design flow affected?
= This work — mapping of the NoC

ﬁ Outline

= The Era of Many Module SoC

= Revisiting the Mapping Problem
s Cross-Entropy Optimization

= Evaluation

i NoC Mapping

s Glven

= Traffic pattern(s)

= a set (or sets) of pair-wise bandwidth requirements and
timing constraints

= Routing
= Topology

= Goal

= Find efficient mapping of cores to tiles

i Mapping Optimization

= An important design step
= Mapping affects power and performance!

= A difficult problem!
= Often heuristic algorithms are used

= Common optimization goals
= Minimize (dynamic) power
= Minimize power + maximize performance
= Minimize power subject to performance constraints

11

i Modeling

= Typical modeling
= Power and latency proportional to distance
= Cost function:

Cost(rr € P) = ZBW > [- Dist(i,])]

1<i,j<N

12

Calculating Mapping Cost

Cost(meP)=Y BW,= Y. |b_, -Dist(i,)|

leL I<i,j<N

Cost(r,) =|bw(PE, — PE,)- Dist(PE, — PE,)|+|bW(PE, — PE,)-bw(PE, — PE,)]

Cost(r,) =30- Dist(PE, — PE,)+100- Dist(PE, — PE,)
Cost(r,) =30-2+100-3 =360
Mapping =,

|

Cost(r,)=30-2+100-2 =260

Mapping m,
13

i Motivation - Example #1

= Optimal mapping (x,):

Cost(w)= Y. |b.,,-Dist(i,) | =9

1<i, j<N

14

i Motivation - Example #1 (cont.)

= Let the mapping algorithm assign the flows!

. ‘PEZ PEB’ ‘
2*MEM

= Optimal mapping (n,):

i Motivation - Example #1 (cont.)

Cost(n,)=7
= The mapping algorithm should be aware of
replicated modules! 6

i Classic Performance Constraints

= Pair-wise point-to-point requirements
= For example, in @ 4-module system:

PE1
[
PE2
2
PE3
1
1
PE4
1 1
PE1 PE2 PE3 PE4
[7 1

Motivation - Example #2

Stream ID PEs Timing
Requirement

Stream 1 PE1>PE2->PE3->PE4 4

Stream 2 PE2->PE4 1

18

i Example #2 - Pair-wise req.

PE2 2
PE3. 1

PE4 1 1

PE2 PE3

= No feasible mapping!

i Application-Level Requirements

Stream ID

PEs

Requirement

Stream 1

PE1->PE2->PE3->PE4

4

Stream 2

PE2->PE4

1

= A feasible mapping does exist!

= It's better to work with the application level

requirements

PE2

PE4

20

i This Work

= Find efficient mappings by extending the
formulation of the mapping problem

= Adding degrees of freedom

= Degree of freedom #1
= | everage existence of replicated modules

= Degree of freedom #2

= Replace p2p constraints with end-to-end,
application-level requirements

21

i Modifying the Formulation (1)

= Leverage existence of replicated modules

= Allow the mapping algorithm to allocate flows to

the best replicated module

Flow BW E‘Qf
PE,>DSP, | 100 3
PE,>DSP, | 200 | 12

PE,>SRAM, | 100 | 15
PE,>SRAM, | 100 5

=

Flow

BW

Time
Req.

PE,> <ANY DSP>

100

PE,~> <ANY DSP>

200

12

PE,> <ANY SRAM>

100

15

PE,> <ANY SRAM>

100

22

Modifying the Formulation (2)

= Replace p2p constraints with end-to-end,
application-level requirements

[oo Stream Stream'’s PEs E2E
7 [oo ID Req.
3144 1 PE,>PE,>PE,>PE, | 23
3[1]3|w ~>PEy
1515 T2l ||[|| > 2 PE.>PE,>PE;>PE, | 12
e 7 e B e >PE,>PE,>PE,,
AR PEs~>PE,>PE, 15
olelsl1ilol2 ol 4 PE,>PE,>PE,>PE, | 20
10| 3|5f0|0|3]|7]|7 5 PE,>PE, 2
1]3fo0f2]1]2]3|cof3]|

P2P timing req. E2E timing req.

= In this paper, for synthetic task graphs
- Did so for a real application too

ﬁ Outline

= The Era of Many Module SoC

= Revisiting the Mapping Problem
= Cross-Entropy Optimization

= Evaluation

24

i Cross Entropy Optimization

= Modern optimization heuristic
= Good at combinatorial optimization problems

= Akin to evolutionary algorithms

= Generation of new solutions is based on sampling
and estimation

= Inherently a global search method
= Reduced risk of getting trapped in a local minimum

25

Cross Entropy Optimization

Given an initial parameter vector v=v,, sample a random population of K
solutions X;,X,,.., X, from the distribution given by f (x;v).

Evaluate the costs S(xi),i=1,..,K.

Using the pK (0<p<l) elite (lowest cost) samples, obtain a new density function
f(x;v) by calculating a new vector v via Maximum Likelihood (ML) estimation.

Repeat steps 1-3 with the new vector v unless maximum number of iterations 1is
reached or no improvement i1s obtained for a predefined number of iterations.

= For example:

1. Generate 10 random mappings: n,, n,, ..., T,
2. Find 3 lowest cost mappings: n,, s, 7,
3. Examine those 3 best mappings:

a. For each tile, calculate the probability core PE,
is mapped to that tile

8. Update probabilities accordingly

26

CE Example

Prob (TileA€<PE,
Prob (TileB€<PE,

Prob

Prob (TileD€PE,

(
(
(
(

Prob (TileA€<PE,
Prob (TileB€<PE,

TileC€PE; Prob (TileC€PE,

Prob (TileD€PE,

) ()
) ()
) ()
) ()

Tile Tile
A B
Tile Tile
C D
Prob (TileA€PE;) =Prob (TileA<PE,)=0.25
Prob (Ti1leB€PE;) =Prob (TileB<PE,)=0.25
Prob (TileC&PE;) =Prob (TileC<PE,)=0.25
Prob (TileD€PE;) =Prob (TileD€<PE,)=0.25

27

i Updating Probabilities

U U%

Tile Tile
A B
Tile Tile

Uy

= Prob(TileA€PE,)=1

m Prob (TileB€<PE2)=2/3

m Prob(TileB€<PE4)=1/3

s Prob(TileC€&PE3)=2/3 = Prob(TileD&PE2)=1/3

s Prob(TileC&PE4)=1/3 m Prob(TileD€PE3)=1/3
m Prob(TileD€<PE4)=1/3

= Following iteration uses these updates probabilities
= Gradually, probabilities converge to 0/1

28

i Outline

= The Era of Many Module SoC

= Revisiting the Mapping Problem
s Cross-Entropy Optimization

= Evaluation

29

i Evaluation

s Scenario
= 6x6 mesh NoC

= Synthetic, randomized SoC
= Task graphs (and task-to-core mapping)
= Varying number of replicated modules
= Varying timing constraints
= (Real application in DATE10 paper)

= Compare with best cost of classic mapping
= Averaging multiple runs

30

ﬁ Accounting for Replication

35

® One Class
Two Classes

w
o

25 = Four Classes

20

15

Cost Reduction [%]

10

. . o o

WWWWWWWWWWWWWWWW

o | W W - %g -
10 20 30 40 50
Total number of Replicated Modules [%]

= 'Class”: a group of identical PEs

= Total number of replicated cores=
{Number of classes}*{class size}

i Application-Level Requirements

20

18 -
16

14

10
8

Cost Reduction [%]

12

® 0%extra constraints

% 20%extra constraints
35%extra constraints

® 50%extra constraints

O N b~ O
_

Medium Loose

Pipeline Slack

Very Loose

= S0Cs with a pipeline data path and
background P2P traffic
= Varying pipeline slack
= Different amounts of background constraints

32

i Conclusions and Future Work

= We are going into the era of "Many module
SoC”

= Extend the mapping to account for
= Classes of replicated modules
= Application-level requirements

= Meaningful power savings

= But mapping is an example

= Routing? Task assignment? Link design? Topology
selection?

33

‘LThe Era of Many-Module SoC
Thank you!

Questions?

zigi@tx.technion.ac.il

34

