

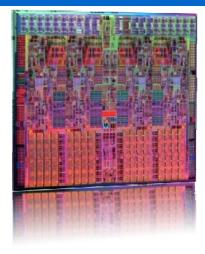
Yield Enhancement by Robust Application-Specific Mapping on Networks-on-Chip

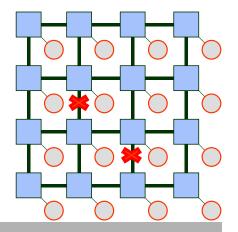
A. Dutta Choudhury ALaRI - University of Lugano Lugano, Switzerland

anirban.dutta.choudhury@lu.unisi.ch

G. Palermo, C. Silvano, V. Zaccaria

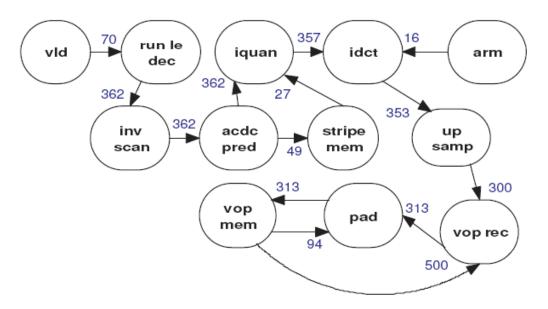
Politecnico di Milano, Milano (ITALY) Dipartimento di Elettronica e Informazione silvano@elet.polimi.it


Outline


- Introduction and Motivations
- Methodology for Fault-Tolerant NoCs
 - Target Problem: Robust IP-to-NoC Mapping Problem
 - Problem Reformulation as Multi-Objective Mapping Problem
 - Proposed Multi-Objective Mapping Heuristic
- Experimental Results
- Conclusions

Introduction

- Energy-aware fault-tolerant Network-on-Chip designs are crucial for the design of complex embedded systems.
- Current technological defect densities and production yield are the motivating factors to introduce design-for-manufacturability techniques during the high-level design of complex embedded systems based on NoCs.
- Given the problem of mapping an IP graph to a NoC topology graph, our main goal is to increase the robustness of the NoC-based system with respect to link failures due to manufacturing defects.

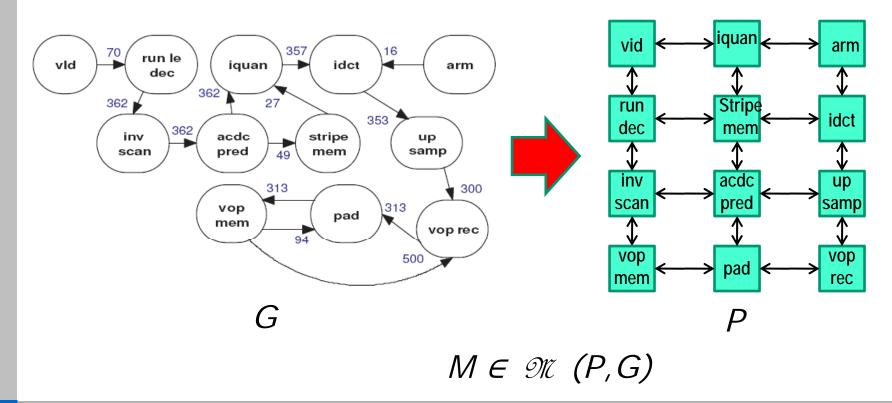


Definition of IP Graph

- The *IP Graph* is a direct graph *G(V,E)* where *V* is the set of IPs of the target System-on-chip and *E* is the set of edges representing the communication between the IPs v_i ∈ V and v_j ∈ V. The weight w_{i,j} of the edge e_{i,j} ∈ E represents the bandwidth of the direct communication from v_i to v_j
- An example: IP Graph of Video Object Plane Decoder (part of MPEG4 decoding algorithm)



Cristina SILVANO - Politecnico di Milano (ITALY)

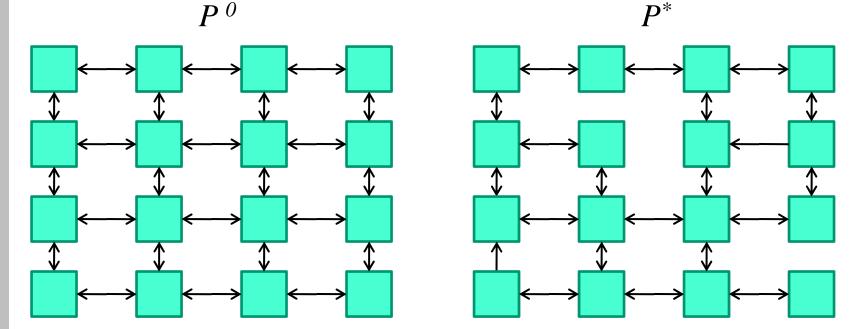

Definition of NoC Topology Graph

- The *NoC Topology Graph* is a direct graph *P(U, F)* where *U* is the set of network nodes and *F* is the set of direct edges representing a link between the network nodes *u_i* ∈ *U* and *u_j* ∈ *U*.
 The weight of the edge *f_{i,j}* ∈ *F* represents the bandwidth *bw_{i,j}* available across *f_{i,j}* and a probability *π_{i,j}* of becoming unavailable due to manufacturing defects.
- An example: 2D-mesh with 16-nodes

Mapping from IP Graph to NoC Topology Graph

- The *IP-to-Node mapping* function *M* : *V* → *U* is defined as the set IP-to-Node mappings (*v_i*, *u_j*), representing the IP *v_i* ∈ *V* mapped to the network node *u_j* ∈ *U*.
- An example: IP Graph of VOPD mapped to 12-node 2D-mesh

Motivations


- A network fault makes some of the topology links unavailable and it generates a change on the fault-free NoC Topology Graph P^o, resulting into a new P^{*}.
- Assuming a dynamic routing policy, when the fault is detected, the new P* can, in principle, still be working with sub-optimal power and delay figures
- However it could happen that the new P* cannot enable any routing policy without incurring in a deadlocked/not-working network.
- The motivating question behind this paper is:

Is it possible to devise an IP mapping to NoC topology graph such that, given a network fault probability distribution, the power efficiency and the performance of the new topology P* are optimized while minimizing the probability of incurring into a deadlocked/not-working network?

Network Fault Model

- The actual network topology graph P^* can be different from the original fault-free topology graph P^o because of some of the original links could be unavailable due to manufacturing defects. Each scenario P^* is associated with a probability of occurrence π (P^*)

Target Problem: Robust Optimization Problem

- To find an optimal IP-to-Node mapping M such that the estimated power consumption η and application execution delay τ of NoCbased system are minimized for all possible scenarios P^* derived from the original P^{o} . Moreover, we want to minimize the probability of deadlocked combinations (M, P^*) :

$$\min_{M \in \mathcal{M}(\mathcal{P}^{o}, \mathcal{G})} \begin{bmatrix} \eta(M, \mathcal{P}^{*}) \\ \tau(M, \mathcal{P}^{*}) \\ prob(\perp(M, \mathcal{P}^{*})) \end{bmatrix} \forall \mathcal{P}^{*} \in \Pi(\mathcal{P}^{o})$$

where \perp is a predicate which is true whenever the combination of the actual mapping *M* and the current scenario *P*^{*} results into a network deadlock (when using a minimum path routing, or when the communication requirement are not satisfied).

Problem Reformulation as Multi-Objective Mapping

Optimization of the mean μ and variance σ^2 of the target system metrics y (power η and delay τ) \Rightarrow definition of an aggregate quality measure Q_y of each system metric y given a set of N samples y_i corresponding to deadlock-free scenarios:

$$Q_y = \frac{1}{\left(\frac{1}{N}\sum_{i=1}^N y_i^2\right)}$$

Maximization of the yield with respect to non-deadlocked combinations:

$$Y(M) = 1 - prob(\perp (M, \mathcal{P}^*) | \pi(\mathcal{P}^*))$$

 Multi-Objective optimization problem to find a Pareto set H of mapping solutions with respect to the objective functions: power quality, latency quality and yield

$$\max_{M \in \mathcal{M}(\mathcal{P}^o, \mathcal{G})} \begin{bmatrix} Q_{\eta(M)} \\ Q_{\tau(M)} \\ Y(M) \end{bmatrix}$$

Proposed Robust Mapping Algorithm

Require: $\mathcal{G}(V, E), \mathcal{P}^o(U, F), R, \rho$
Ensure: $ U \ge V $
1: $H = \{ \}$
2: $cov = \infty$
3: while $cov > 0$ do
4: H_R = generate R random initial mappings from
$\mathcal{M}(\mathcal{P}^o,\mathcal{G})$
5: $cov = \chi(\psi(H \cup H_R), H)$
6: $H = \psi(H \cup H_R)$
7: end while
8: $C = \{C_{min}, C_{avg}, C_{max}\} = $ k-means clustering of H into
3 sets, considering $Y(M), \forall M \in H$
9: for $\forall C_i \in C$ do
10: $k_0 = \arg \max \Phi(M), \forall M \in C_i$
11: $N(k_0) = \nu(k_0, \rho)$
12: $k_1 = \arg \max \Phi(M), \forall M \in N(k_0)$
13: $f_0 = \Phi(k_0), f_1 = \Phi(k_1)$
14: while $f_1 > f_0 do$
15: $k_0 = k_1, f_0 = f_1$
16: $N(k_0) = \nu(k_0, \rho).$
17: $k_1 = \arg \max \Phi(M), \forall M \in N(k_0)$
$18: \qquad f_1 = \Phi(k_1)$
19: end while
$20: h_i = k_0$
S1: end for
22: return arg max $\Phi(M), \forall M \in (\{h_{min}, h_{avg}, h_{max}\})$

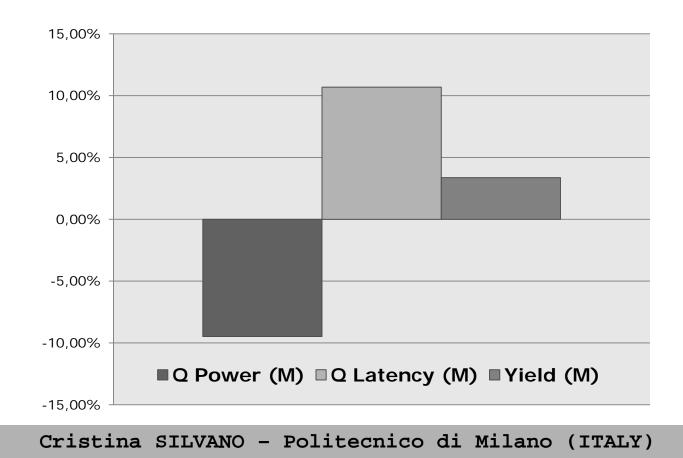
Iterative Pareto filtering of a set of random mappings

H = Pareto front of mapping solutions

K-means clustering to partition the Pareto-set H in 3 yield classes

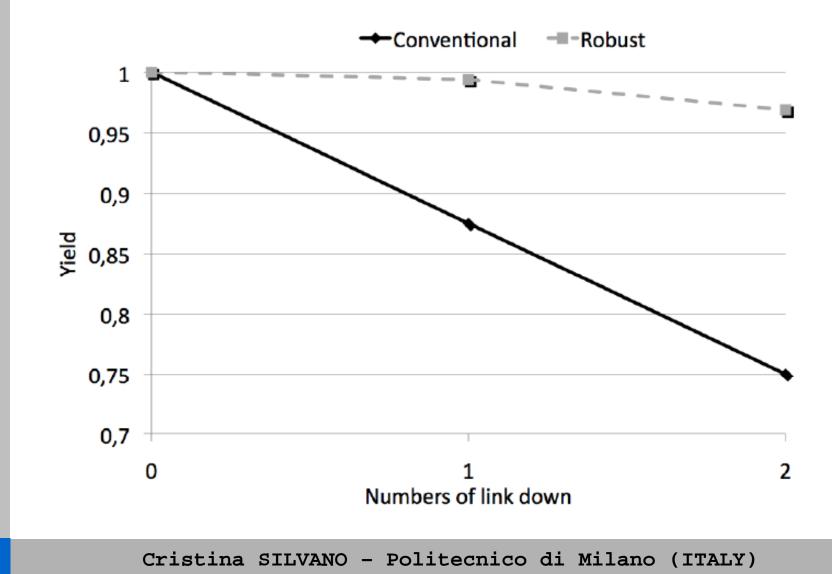
Steepest climbing neighborhood search to optimize the geometric average Φ of objective functions

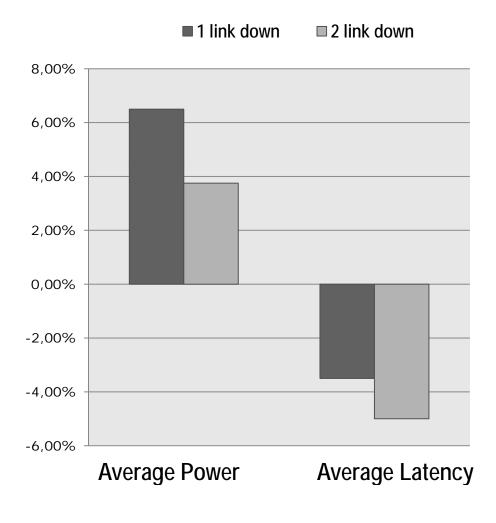
Return best mapping w.r.t. Φ


Experimental Results

- Mapping of IP-Graph of VODP application to a (4 x 3) mesh NoC topology.
 - Power model characterized with 90 nm STMicro library
 - Latency model derived from PIRATE NoC simulation framework

Comparison: Robust vs Conventional Mapping


 Comparison of the proposed robust approach with respect to a conventional mapping (SUNMAP) minimizing the aggregate NoC bandwidth considering non-faulty topology


Yield of robust and conventional approaches for 1 link down and 2 links down

Percentage variation of robust vs conventional approach in terms of average power and latency

Cristina SILVANO - Politecnico di Milano (ITALY)

Conclusions

- A robust application-specific methodology has been proposed for identifying optimal IP-to-NoC mappings in Chip Multi Processor architectures.
 - The proposed robust mapping approach increases the probability to derive a feasible routing even in the case of faulty links.
 - Future research is directed towards the analysis and optimization of the influence of more complex probability distributions to the overall system metrics.
 - This work is part of the ICT-FP7 EU project MULTICUBE on Automatic Design Space Exploration for CMPs.

www.multicube.eu

Cristina SILVANO - Politecnico di Milano (ITALY)