

PROM

Path-Based, Randomized, Oblivious, Minimal Routing

Myong Hyon "Brandon" Cho, Mieszko Lis, Keun Sup Shim, Michel Kinsy, and Srinivas Devadas

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

Outline

• Motivation and Strategies

Robust performance through better load-balancing

• PROM:

Path-Based, Randomized, Oblivious, Minimal Routing

• Performance Evaluation

Conclusions

Outline

Motivation and Strategies
 Robust performance through better load-balancing

• PROM:

Path-Based, Randomized, Oblivious, Minimal Routing

Performance Evaluation

Conclusions

Routing & Network Throughput

Routing plays a critical role in network throughput

From "Application-Aware Deadlock-Free Oblivious Routing" [Kinsy et al./ISCA'09]

Dimension-Order Routing (DOR)

Approaches in one dimension first, then in the other

- Bandwidth
 No path diversity
- Latency
 Minimal routing
- Deadlock Prevention
 Deadlock-free with 1 VC

Valiant

Uses one random intermediate node per each packet

- Bandwidth
 Wide path diversity
 Optimal Worst-case Result
- LatencyPoor latency
- Deadlock Prevention
 Deadlock-free with >= 2 VCs
 each phase should use different VCs

n-phase ROMM

 n-1 random intermediate node(s) only in MBR (Minimum Bounding Rectangle)

2-phase ROMM (XY/YX)

- Bandwidth
 More path diversity than DOR
 Limited by the value of n
- Latency
 Minimal routing
- Deadlock Prevention
 Deadlock-free with >= n VCs
 each phase should use different VCs

O1TURN

Choose either XY-DOR or YX-DOR per each packet

Bandwidth
 Two paths are possible
 Optimal Worst-case Result

Latency
Minimal routing

Deadlock Prevention

Deadlock-free with >= 2 VCs

- each phase should use different VCs

Routing and Performance

- Depend on traffic patterns
- Optimal "worst-case" result: Valiant, O1TURN
- In general, path diversity helps lower congestions due to load balancing.

Congestions & HoL Blocking

Head-of-Line (HoL) Blocking

From "Static Virtual Channel Allocation in Oblivious Routing" [Shim et al./NOCS'09]

 Wide, uneven path diversity increases HoL blocking because more flows

Congestions & HoL Blocking

Head-of-Line (HoL) Blocking

From "Static Virtual Channel Allocation in Oblivious Routing" [Shim et al./NOCS'09]

 Wide, uneven path diversity increases HoL blocking because more flows

Goals & Strategies

Goal:

Oblivious routing with robust performance under various traffic patterns

Goals & Strategies

Goal:

Oblivious routing with robust performance under various traffic patterns

- Strategies:
 - 1) A congestion-based approach
 - "Better" traffic distribution with low cost

Goals & Strategies

Goal:

Oblivious routing with robust performance under various traffic patterns

Strategies:

- 1) A congestion-based approach
- "Better" traffic distribution with low cost
- 2) For the HoL blocking effect,
- EVEN traffic load distribution
- Control path diversity and latency within the MBR
- Maximize the benefit from less congestions
- Adopt other methods (not related to routing) to reduce HoL

Outline

- Motivation and Strategies
- PROM:

Path-Based, Randomized, Oblivious, Minimal Routing

- PROM framework
- PROM variants
- Deadlock Prevention
- Performance Evaluation
- Conclusions

PROM Framework

- Minimal Routing: bounded latency and HoL blocking
- If there are multiple next hops possible,
 Each node chooses one based on a given probability.

This path has a 12.5% chance of being taken.

How these probabilities are set determines the specific instantiation of PROM.

Uniform PROM

• Each possible minimal route has an equal chance of being taken.

$$P_{\wedge} = ?$$

$$P_A = ?$$

 $P_B = ?$

Uniform PROM

Distance to the destination is used to set the probabilities

- A is followed by [x+(y-1)]!/[x!(y-1)!] minimal routes
- B is followed by [(x-1)+y]!/[(x-1)!y!] minimal routes

$$P_A = y/(x+y)$$

 $P_B = x/(x+y)$

Uniform PROM vs. ROMM for N-by-N mesh

	Uniform PROM	2-phase ROMM	(2N-1)-phase ROMM
Path Diversity	Max.	Limited	Max.
Even * Load Balancing	Yes	No	No
Hardware Cost	Small (≥ 2VCs)**	Small (≥ 2VCs)	Large (≥ 2(N-1) VCs)
Communication Overead	None	Small	Large

^{*} in terms of paths taken ** illustrated in later slides

- Uniform PROM:
 Great load-balancing property for large mesh networks
- May not fit small mesh networks.
 - Links in the middle are more congested.

Added a parameter to adjust traffic distribution.

• Previously,

$$P_{A} = y/(x+y)$$

$$P_{B} = x/(x+y)$$

• An additional parameter *f*:

• If f is large, A is preferred (not making a turn).

Probabilities depends on ingress direction

When f is large, there is preference "not to make a turn"

 Increasing f pushes traffic from the diagonal of the MBR towards the edges

Variable Parameterized PROM (PROMV)

- If the MBR of a network flow is large:
 - Outer edges are more likely close to the network edges
 - It's better to push traffic toward the edges (larger f)

For each network flow, f is determined by:

$$f = f_{\text{max}} \cdot (xy/N^2)$$

Deadlock Prevention

- In PROM, deadlock can be simply avoided by:
 - Network must have **two** disjoint sets of VCs.
 - If the destination is **left** to the source, use the **first** set of VCs.
 - If the destination is **right** to the source, use the **second** set of VCs

...conforms to North-Last turn model.

Outline

- Motivation and Strategies
- PROM: Path-Based, Randomized, Oblivious, Minimal Routing
- Performance Evaluation
- Conclusions

Ideal Throughput

- Ideal Performance assuming:
 - Fair scheduling
 - No HoL blocking issue
- Worst-case Performance

Ideal Throughput

Average-case Performance (10K random traffic patterns)

Performance with Dynamic VC Allocation

- Ideal throughput of O1TURN and PROMV are similar.
- In spite of HoL blocking, PROMV and O1TURN are equivalent.

Performance with Dynamic VC Allocation

- Ideal throughput of PROMV is better.
- The amount of HoL blocking depends on applications.

Exclusive Dynamic VC Allocation

- Exclusive Dynamic VC Allocation(EDVCA) mitigates the HoL blocking issue [Lis et al./CSAIL Tech Report'09]:
 - In each cycle, a flow is allowed to hold only one VC at one node.
- HoL blocking is not completely eliminated, but significantly reduced.

Performance with EDVCA

 PROMV's better ideal throughput results in better actual throughput.

Limitations & Future Works

- Need to be evaluated with various 'real-world' applications:
 - FPGA implementation of a many-core system
- Need more analytic study on HoL blocking
 - Hard to find a good metric on HoL blocking for given routes
 - Important to design a routing scheme that can *actually* perform better
- PRAM: Path-Based, Randomized, Adaptive, Minimal Routing
 - A good platform for an adaptive routing scheme

Conclusions

- Through better load balancing,
 PROM has robust performance under various loads.
 - Higher ideal throughput with various traffic patterns.
 - It results in better throughput with EDVCA.