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Abstract— Adaptive tree-based multicast routings for
networks-on-chip (NoC) in a mesh planar router architecture
are presented in this paper. Multicast packets are routed and
scheduled in the NoC using a local Identity-based multiplexing
technique with wormhole switching. The identity-tag attached to
every flit allows different flits of different packets to be mixed in
the same queue and enables to implement a fair flit-by-flit round
arbitration to share communication links. Hence, deadlock
in intermediate nodes as a main problem in the tree-based
multicast routing can be handled efficiently and effectively. Some
static and planar adaptive routing schemes are implemented
to evaluate the impact of the routing algorithms over the NoC
performance. The router prototypes have been also synthesized
using 130-nm and 180-nm standard-cell technologies.

I. INTRODUCTION

Services in terms of efficient routing and scheduling are
critical to the performance of the NoC-based multicore proces-
sor systems. Historically, the first generation multicomputers
supported only unicast communication (a single PE sends a
message to a single PE unit). Nowadays, the recent multi-
computers have begun to implement collective communication
services. Collective communication services embrace multicast
(the same message is sent from a source node to an arbitrary
number of destination nodes), scatter (different messages are
sent from a source node to an arbitrary number of destination
nodes), and broadcast (the same message is sent from a
source node to all nodes in the network). With software
implementation, a multicast message can be injected into the
network by sending a separate copy of the messages from
the source to every destination node (unicast-based multicast
delivery). However, this approach is unefficient in terms of
communication latency and energy.

The multicast delivery service has been intensively used
in large-scale multiprocessor systems, and has been a fun-
damental service of some data parallel computer languages.
The following points present the need for multicast services
in parallel computing and multicomputer systems [1].
• Numerous parallel algorithms, e.g. parallel search and

parallel graph algorithms, has been shown to benefit from
the use of multicast service.

• In a single-program multiple-data (SPMD) mode of com-
putation, multicast communication is of benefit. The same
program is executed on different processors with different
data, and several data are proceeded in parallel.

• In a data parallel mode of computation, a variety of
process control operations and global data movement
such as reduction, replication, permutation segmented

scan and barrier synchronization requires collective com-
munication models.

• In a distributed shared-memory paradigm, multicast ser-
vices may be used to efficiently support shared-data
invalidation and updating.

Some NoC-based chip multiprocessors such as RAW ma-
chine from MIT [2], Tile64 processor from Tilera [3], Ter-
aflops from Intel [4] and TRIPS chip [5] have been recently
published. The RAW machine comprises 16 tiles, where each
computing resource tile is connected to programmable routers
in a 2D mesh 4x4 topology. The Tile64 processor architecture
consists of a 2D 8x8 grid of identical compute elements (tiles).
The Teraflops processor architecture contains 80 tiles arranged
in a 2D array and connected by a mesh 8x10 network. The
TRIPS prototype chip contains two data networks, an on-chip
network (OCN) and an operand network (OPN). The OPN
consists of two TRIPS processors and is connected to the OCN
comprising memory tiles in a 2x8 array structure.

Programming models of the parallel computing systems
can be divided into shared-memory, threads, message passing
and data parallel programming models. A hybrid parallel
programming model can be also developed by combining two
or more programming models, e.g. shared-memory model on
a distributed memory machine. Most of the multiprocessor
systems mentioned before are designed to support thread-level
(multithreads) parallelism, shared-memory and message pass-
ing programming models. The RAW processor compiler [6]
for instance uses the multithreaded program written in a high-
level programming language and map it onto RAW hardware.
While Tile64 is equiped with C-based interconnect library
[3] that provides programmers with a set of commonly used
communication primitive such as MPI-like message passing
interface for ad hoc messaging.

A framework for automatic parallelization has been in-
troduced in [7]. The aggressive automatic thread extraction
framework will let programmers achieve the performance of
parallel programming via a simpler sequential programming
model. The new era of parallel computation running on a
single chip multiprocessor systems is now coming and will be
a hot topic. The multicast delivery services whose benefits that
have been explored previously will be also an interesting issue
for integrating the parallel computing models on the NoC-
based multiprocessor systems.

II. RELATED WORKS AND MOTIVATIONS

Multicast messages can be routed in the network using path-
based [1], [8], [9] or tree-based [10], [11], [12] multicast



routing. However, the multicast networks presented in the
abovementioned works are not dedicated for single-chip net-
works. Indeed, the routing hardware units presented in those
works are very complex, and may also increase the logic area
after gate-level synthesis. In our NoCs, the adaptive routing
algorithms used to route unicast and multicast packets are the
same, resulting in a very efficient routing function gate-level
implementation.

The NoC presented in [13] has introduced the path-based
multicast routing to avoid multicast deadlock in the destination
nodes by reserving virtual channels and giving priority for
the multicast message over the unicast message on arbitration
of link bandwidth. Experiments in the work show that the
proposed multicast technique improves throughput, and does
not exhibit significant impact on unicast performance in a
network with mixed unicast-multicast traffic “only if” the
network is not saturated. Our proposed multicast scheduling
does not give priority for multicast messages (fair flit-by-flit
arbitration between the unicast and multicast messages). Our
multicast technique does not also present significant impact
on the unicast performance “even if” the network is saturated
because of the implementation of flit flow control at link-level.
Indeed, the NoC in [13] has not been synthesized into logic
gate level.

The NoC presented in [14] uses a time-space-time switch
designed for time-division-multiplexing (TDM-based) NoCs.
Slot map tables as central components are used as time slot
interchangers to directly control the read and write operation
to random access frame buffers. Unfortunately, although this
work has mentioned the feasibility of implementing the multi-
cast scheduling technique, a concrete multicasting procedure,
system-level or RTL-level simulations for measuring the NoC
performance over multimessage multicast traffics and the NoC
capability to handle the multicast deadlock problem are not
presented in the paper.

Æthereal NoC [15] and Nostrum [16] have used a time-
division-multiplexing approach in order to be able to support
the multicast services for further implementation in their NoC
architectures. However, experiments by analysing multicast
traffics and the NoCs performances over multicast deadlock
problem have not been released so far. As far as we know,
our NoC, which is called XHINoC (eXtendable Hierarchical
and Irregular NoC) is the first gate-level synthesizable NoC
supporting the multicast services. The XHINoC has proposed a
new approach for a deadlock-free tree-based multicast routing
that can be disjointed into various NoC topologies with
specific router microstructures. Hopefully, our investigation
under XHINoC infrastructure could make one step forward
on the integrated research synergy between on-chip multipro-
cessor (CMP) in NoC platforms (hardware-level) and parallel
computing (software-level) in the future.

III. TREE-BASED MULTICAST ROUTING

In the tree-based multicast routing, the header ordering in
source nodes is not required (the order of the destination
addresses can be freely determined). The multicast routing will
form communication paths like branches of trees connecting
the source node with the destination nodes at the end points of
the tree branches. A higher possibility that multicast deadlock
occurs in intermediate nodes has alleviated the intentions of

Fig. 1. The packet format for (a) unicast and (c) multicast, and (b) binary
encoding of the flit types.

the most of network designers to use this method. However,
we have introduced a new multicast scheduling for tree-
based multicast routing to solve effectively and efficiently the
multicast deadlock, which can change the intention of the
network designers.

A. Multicast Packet Format
The packet format used in our NoC is presented in Fig. 1.

Fig. 1(a) presents the packet format for unicast messages. The
39-bit packet consists of a header flit followed by payload flits.
The additional heads for each flit are 3-bit flit type and 4-bit
packet ID (Identity). The Type can be header, data body, and
the end of databody (last/tail flit) as shown in Fig. 1(b). Flits
belonging to the same message have the same local ID number
in a local queue, and vary over different communication
links to support scalable concept and wire-share flexibility.
Fig. 1(c) shows the packet format for multicast messages. The
m number of the embedded packet headers is the same as the
number of targeted m multicast destinations.

B. Routing and Multicasting Procedure
Routing engine (RE) units in our NoC consist of combina-

tion of a router hardware logic (RHL) unit and a routing look-
up table (LUT) unit. The combination is aimed at supporting
a runtime link interconnect configuration. If the RE units
identify a header flit in the output of a FIFO buffer, then the
RHL unit will find a routing direction based on destination
address stated in the header flit and current address of the
router, and assigns the routing direction in a register of the
LUT unit, and then index it based on its ID-tag. In the next
time periods, when the RE units identify payload flits with the
same ID-tag number with the previously forwarded header flit,
then their routing direction will be taken up directly from the
LUT unit in accordance with their ID-number indexed before.

There are three main steps to deliver a multicast message
into multi destination processing elements. Firstly, forwarding
all header flits for the multicast tree routing setup and ID-slot
reservation. Secondly, broadcasting the payload flits to follow
the path set up by the header flits. And the last, setting free the
reserved local ID-slot by the tail flit. As shown in Fig. 1(c),
each header represents one address of a multicast node.

C. ID-Based Multicast Scheduling
1) ID Slot Allocation: In our NoC, unicast and multicast

messages are multiplexed at each outgoing link based on an ID
slots allocation technique. As a counterpart of a Time-Division



Fig. 2. ID-tag slot allocation of tree-based multicast packet routing.

Multiplexing (TDM) technique, our ID-based Multiplexing
technique provides more flexible and optimistic solution for
scheduling unicast or multicast message in networks at run-
time. There is also no need for a global network view if the
link would be scheduled at design time.

Fig. 2 shows how ID-slots of each outgoing link are
allocated for each tree-branch of the multicast packets A, B
and C which are injected into the mesh 4x4 NoC topology. As
shown in the figure, each tree-branch of the multicast message
has different local ID-tag. The local ID-tags are updated over
the links by using an ID mapping management technique
as later explained in Subsections III-C.2 and III-C.3. Some
multicast messages have also contentions to access the same
outgoing links in the figure, in which multicast deadlocks are
performed. In order to overcome that problem, we introduce
a fair flit-by-flit hold-release scheduling policy as presented
later in Subsection III-C.5.

2) ID-Based Routing Organization: The ID-based schedul-
ing technique enables us to mix different flits of different
messages into the same queue and to perform a fair flit-by-
flit round arbitration to access outgoing ports. Fig. 3 presents
three messages (Messages A, B and C coming from EAST,
WEST and NORTH port, respectively) in the router node (2,3)
that are switched to the router node (2,2) through the same
SOUTH outgoing port. For the sake of simplicity, only routing
tables (LUT) of the routing engine (RE) units of the occupied
incoming ports are presented in the figure. Message A, B
and C have local ID-tag 3, 2 and 3, respectively. Hence, the
SOUTH routing direction are indexed and addressed in the
routing tables based on the ID-number.

An ID management (IDM) unit at the SOUTH outgoing link
as shown in Fig. 3 is used to update the local ID-tag of each
packet into a new ID-tag before entering the next downstream
router. Each new packet is allocated into a free ID slot and
indexed/mapped based on its old local ID-tag and from which

Fig. 3. ID-based routing and packet interleaving.

port it comes. As presented in the figure, Message A, B and
C are mapped into new local ID-tags 0, 1 and 2, respectively.
The following subsection will explain how the local ID-tag is
updated.

3) ID-Slot Updating and Management: Fig. 4 shows how
a packet header coming from NORTH port with ID-tag 3
which is just switched from crossbar switch is updated. The
ID update process is described into 4 steps. In the 1st step, the
IDM detects a new incoming packet header and then looks for
a free ID slot by checking the ID-state table. In this case, the
ID-tag 2 is free and then in the 2nd step, the ID is assigned as
the new ID-tag for the new packet. In the 3rd step, the ID-slot 2
is indexed based on the old local ID-tag 3 and NORTH data
from which it comes. Hence, every time a payload flit coming
from NORTH port with ID-tag 3 will have the new ID-tag 2.
In the 4th step, ID-tag 2 state is set from “free” to “used”, and
the number of used ID (UID) is incremented. When the UID
is the same as N number of available ID slots, then “empty
free ID flag” is set. When a tail flit (the end of databody) is
passing through the outgoing port, then the related ID-tag 2
state is set from “used” to “free”, the UID is decremented
and the information related to the tail flit ID-number is then
deleted from the ID Slot Table.

4) ID Slots Requirement: Our current implementation uses
4-bit ID field in each flit. Hence, a maximum number of 16
packets (24) can be in flight on the same link. The number of
available ID slots can be increased by increasing the number
of ID field bits as presented in the packet format, resulting in
an increase of the routing table size and ID slot table size in
the ID management unit. The number of required ID slots is
application-dependent and can not be increased anymore if the
NoC had been implemented on ASIC. Hence, an optimal post-
manufacture application mapping should be made, in order
to avoid that more than 16 packets interfere with each other
across the same link.

In coarse-grain multiprocessor applications, where com-
putation to communication ratio is high, it seems that 16
ID slots per channel are enough to run several applications.
But, if the computation to communication ratio is low (fine-



Fig. 4. ID-tag updating and mapping management.

grain), then the number of available ID slots per channel
must be strongly considered. The user must ensure that each
channel will not be burden with excessive communication
loads. Because, even when a channel were shared by 8 to
10 packets, the bandwidth requirements may be not satisfied
anymore, and the performance of the application may degrade
accordingly. The situation can be compared with a bus system
requested by 8 to 10 components simultaneously. Fortunately,
traffic behaviors in the context of embedded system-on-chip
and multiprocesor applications are predictable. Hence, it is
possible to map an application in NoC-platform in such a
way that all packets will be able to reserve ID slots to
perform requested communications with fulfilled bandwidth
requirements.

5) Hold-Release Multicast Fair Scheduling Policy: The
tree-based multicast routing is prone to deadlock. The dead-
lock occurs in a intermediate node when one or more outgoing
links are simultaneously requested by the same multicast
packets. Therefore, we propose a new methodology to handle
the multicast deadlock. Fig. 5 presents 6 Snapshots of the
proposed multicast scheduling method and a fair flit-by-flit
round arbitration of a so called hold-release multicast fair
scheduling policy for the deadlock handling mechanism.
• In Snapshot 1, three multicast packets, i.e A coming

from EAST, B from WEST and C from SOUTH ports
request different and the same outgoing links. NORTH
and WEST outgoing links are requested by Packets A
and C. The other outgoing links are only requested by
one Packet, i.e. EAST and SOUTH outgoing links are
requested by Packet B, and LOCAL link by Packet C.
The flits A10, B10 and C10 represent the flits with local
ID-tag 0.

• Although the outgoing links are requested by more than
one packet, one by one of the flits of all packets can be
granted as a winner to access the outgoing link at every
stage as shown in Snapshot 2. In this stage, we assume
that flit C1 is firstly selected to access the NORTH
outgoing link, while flit A1 is granted as the winner to
access the WEST outgoing link. The other outgoing links
i.e., EAST, SOUTH and LOCAL, select also their single

request from flits in the incoming port.
• In the next stage as presented in Snapshot 3, all granted

flits are accepted in the outgoing links. However, the
states of all flits in incoming are different and depend
on whether their multicast requests have been granted by
their required outgoing ports. For instance, all multicast
request of Packet B to access EAST and SOUTH ports
have been granted by these ports. Hence, flit B1 (with R
state) can be released from FIFO buffer in WEST inport
and its request is now replaced by the request of the new
incoming flit B2. But flits A1 and C1 (with H state)
must be still withheld in input buffers, because their other
requests (presented in dashed lines) to access another port
have not been granted in this stage. In this stage, all ID-
tags of the packets are mapped and updated with new
ID-tag 0.

• In the next stage as shown in Snapshot 4, by using
the flit-by-flit round arbitration method, NORTH and
WEST outgoing arbiters change now their selection to
other flits, which also request the ports. NORTH port
selects now flit A1, while WEST port selects flit C1.
EAST and SOUTH outgoing ports select again the flit
coming from WEST incoming port (i.e. flit B2), because
these ports are only requested by Packet B from WEST
incoming port. But the LOCAL outgoing port will not
grant again flit C1, because flit C1 has been granted in
the previous stage. This decision is made to avoid flit C1
being transferred two times into the LOCAL outgoing
port (avoiding improper multicast replication).

• In the next stage as presented in Snapshot 5, flits A1, B2
and C1 are transferred to the outgoing links, and can be
released from EAST, WEST and SOUTH input buffers
(with R state) respectively, because their multiple requests
have been granted previously step by step in Snapshot
2 and Snapshot 4. Their request are now replaced by
the requests of new incoming flits i.e., flits A2, B3 and
C2. Because ID-tag 0 has been used by packet C in the
NORTH and by packet A in the WEST outgoing links,
then packet A in the NORTH and packet C in the WEST
outgoing links are assigned with new local ID-tags 1 (A11

and C11).
• Snapshot 6 shows generally the same mechanism with

the situation shown in Snapshot 2.
6) Link-Level and Dynamic Injection Rate Control: Be-

cause of using a wormhole packet switching, our NoC is
equipped with control mechanisms for flit flow at link-level
and dynamic injection rate. Before contentions of the mes-
sages to acquire the same communication channels occur, the
messages are always injected from the source nodes with a
maximum injection rate. The maximum injection rate is in
accordance with the allowed maximum data frequency. When
the contention occurs, then the FIFO queues in incoming
ports occupied by the contenting messages will be congested
(full). The congestion (full condition) signals are then traced
back to the upstream nodes, and soon or later, the congestion
signals will attain the source nodes. By using “request-grant”
methodology, in which an Injection State Controller (ISC) unit
in the on-chip network interface will not give an acknowledge
signal to inject a new flit into a FIFO queue in a LOCAL
port of the on-chip router until one space register of the



Fig. 5. Hold and Release Multicast Scheduling.

queue is free, then the injection rates at the source nodes
can be controlled automatically and dynamically. The same
mechanism is applied at link-level (inter-router data transfer),
where a Link State Controller (LSC) unit (as later depicted in
Fig. 8) will control the flit transfer from outgoing port to the
next downstream FIFO through a communication channel.

IV. ON-CHIP ROUTER MICROARCHITECTURE

A. 2-D Mesh Planar Topology
Fig. 6 presents an example of the 2-D mesh planar 4x4

network. The network is physically divided into two sub-
networks i.e., X+ (depicted in solid line arrows) and X−
subnetworks (depicted in dashed line arrows). If the x-distance
between source and target nodes (xoffs = xtarget − xsource)
is zero or positive, then packets will be routed through the
physical channels of the X+ subnetwork. If xoffs is zero or
negative, then the packets will be routed through the physical
channels of the X− subnetwork. We can assume that the
ports connected with vertical links of X+ and X− subnet-
works are denoted by (North1, South1) and (North2, South2)
ports, respectively. Hence, the packets routed through the X+
subnetwork will have adaptivity to make West–North1, West–
South1, North1–East and South1–East turns as well as West–
East, North1–South1 and South1–North1 non-turn routing.
While the packets routed through the X− subnetwork will
have adaptivity to make East–North2, East–South2, North2–
West and South2–West turns as well as East–West, North2–
South2 and South2–North2 non-turn routing directions.

The planar adaptive routing on a mesh topology is firstly
introduced in [17] and deadlock-free. Instead of using virtual
channels to implements the link interconnect between NORTH
and SOUTH port as made in [17], we prefer to implement
two physical channels to separate the NORTH–SOUTH link
interconnects for X+ and X− subnetworks. The objectives
of this approach are to maintain the router performance and
to increase the network bandwidth capacity. If the virtual
channels are implemented in the NORTH and SOUTH ports,
then we need to add two virtual queues at both incoming and

Fig. 6. 2-D Mesh Planar Topology.

Fig. 7. Switch/Router Structure. (a) Mesh with Static XY routing, (b) Mesh
Planar with Adaptive Routing.

outgoing ports. Rather than using such virtual queues, which
can degrade router performance characteristic or increase data
transfer latency, we substitute them by adding two additional
ports (NORTH2 and SOUTH2 ports) in the existing mesh
router as presented in Fig. 7(b). In this approach, the number of
additional queues is similar to the virtual channel implemen-
tation but it maintains the router performance. Nevertheless,
the number of input-output pins is certainly increased.

B. Generic Modules and Modular-Based Design
Fig. 7 shows the switch structures for networks with stan-

dard mesh and mesh planar topology. In the mesh standard,
the EAST, NORTH, WEST, SOUTH and LOCAL ports are
represented by port numbers 1, 2, 3, 4 and 5, respectively.
While in the mesh planar, the EAST, NORTH 1, WEST,
SOUTH 1, NORTH 2, and SOUTH 2 and LOCAL ports are
represented by port numbers 1, 2, 3, 4, 5, 6 and 7, respectively.
The numerical numbers in the crossbar area represents the
connectivity between links from the incoming ports to the
outgoing multiplexors.

The XHINoC router microarchitecture is developed based
on modular units and is grouped into incoming block and
outgoing block components. Each module contains generic
codes, which are strongly related to the number of input-output
connectivities of each port. Fig. 8 shows the incoming and
outgoing components in the Port 2 (NORTH 1 port) of the
mesh planar router for instance. In the incoming block, we
need 3-input GMC (Grant-Multicasting Controller) and RDec



Fig. 8. Components in Port 2 (NORTH 1 Port).

(Request Decoder), because the data coming from Port 2 is
only connected to outgoing Port 1, 4 and 7. The GMC itself is
an important unit to control the multicast flit release from the
FIFO buffer. In the outgoing block, we need 3-input Arb (Ar-
biter), RFC (Request-Feedback Controller), WDec (Winner-
out-Decoder) and 3-input outgoing multiplexor, because the
data going out to Port 2 are from incoming Port 3, 4 and 7.
The RFC unit is used to control multicast requests for avoiding
improper multicast flit replications.

The design of the XHINoC routers are fully customized on
demand. However, each VHDL entity contains generic codes,
which enable us to derive a new VHDL module with different
behavioral architecture and the number of input/output pins
according to the specification. The custom-generic modular-
based design approach enables us to develop easily irregular
NoC topologies.

C. Routing Algorithms

In this paper, we will evaluate our proposed mesh topologies
by using four mesh prototypes with different routing algo-
rithms. The first prototype (mesh XY) uses a static XY routing
algorithm in the standard mesh topology (using a router as
in Fig. 7(a)). The remaining three prototypes use 2-D planar
adaptive routing algorithms in the mesh planar topology (using
router as in Fig. 7(b)). In the second prototype (mesh PA XP),
packets from the LOCAL port that can be routed adaptively to
horizontal or vertical direction will be prioritized to select the
horizontal direction, while in the third and fourth prototypes
(mesh PA YP and PA ZZ), the packets from the LOCAL port
will be prioritized to select the vertical direction. However, in
the second and the third prototypes, the packets prefer to make
non-turn routing direction from any port (except from LOCAL
port) if the packets can be routed adaptively to horizontal or
vertical direction. While in the fourth prototype, packet will
make a zig-zag routing selection. The impact of such routing
algorithms over the NoC performance will be explored in
Section V as follows.

V. EXPERIMENTAL RESULTS

A. Selected Traffic Scenario

Fig. 9 exhibits the traffic pattern used to verify our proposed
scheduling methodology and algorithms. Although the traffic
pattern does not represent an example of a real application,
we are sure that the scenario can be accepted as one of

Fig. 9. The selected traffic scenario.

among our best-case scenario to verify our methodology. This
pattern performs some multi deadlock configurations because
of contentions of some multicast messages to acquire the same
outgoing links. Synthesized and randomly selected source and
target nodes are mixed in the traffic in such as a way that
multicast conflicts occur in the NoC.

Eight multicast messages (denoted with Sn in Fig. 9) are
injected to the NoC at the same time and is replicated,
broadcasted and flows in the networks. Each message has six
multicast destination (Tn.m symbols denote the target node
m of a multicast message injected from source node Sn).
As described in Subsection III-C.6, the messages are firstly
injected with a maximum injection rate. The injection rate is
then decreased and increased automatically and dynamically
depending on the existing contention in the NoC routers.
The more multicast messages are involved in a contention to
acquire the same outgoing channel in a certain router node, the
smaller the injection rates of the involved multicast message
will be.

In each Sn node, 2048 flits are injected, resulting in a total
number of 16384 (8 × 2048) flits are injected to the source
nodes, and a total number of 98064 flits are ejected from
the multicast destination nodes. Each message injected from a
certain node is encoded to recognized it from other multicast
messages. Every flit is numbered in-order to enables us to
check the flits one-by-one in our testbench program, whether
any flit looses or is replicated improperly in the network or is
accepted out-of-order in the destination nodes.

B. Performance Measurement Result

The experiment result has also proved, that all flits of the
messages are accepted in-order (the same order as in injection
nodes). The out-of-order problem has been successfully han-
dled because of the packet choice and the working organization
between router hardware logic and routing look-up table units
at each incoming port and the IDM units at each outgoing (See
again Fig. 3). Each message is associated as a single packet
(even if the message size is extremely large, a stream data for
instance) with one header flit for each destination nodes. A



routing decision (statically or adaptively) in each router node
will be made once by the header flit, then all payload flits will
just follow the path set up by the header flit. It means that the
message will “not be divided” into several packets. Hence, the
out-of-order problem will not appear in our NoCs.

The experiment has also exhibited that there is no improper
flit replication. It resumes that our “hold-release” scheduling
policy has successfully control and manage the existing mul-
ticast conflicts at each intermediate node. Table I shows the
measurement of the tail flit (the end of payload flit) acceptance
latency. The table reports the transfer latencies to accept
the tail flits in target nodes Tn.m of each message injected
from Sn node. The transfer latency is measured based on the
number of clock cycle periods to transfer tail flits (the end
of packet/message bodies) starting from injection nodes until
ejection (destination) nodes.

The RTL-simulations are run with similar clock periods to
evaluate all NoC prototypes. As explained in Subsection III-
C.6, all multicast messages are injected at the first-time with a
maximum injection rate. The injection rate at each source node
can change then dynamically and automatically due to the
contention of the message injected from the source node with
other messages to shares the requested channels. Therefore,
transfer latency of the tail flit of the message will increase
because of the reduced injection rate. The maximum tail flits
transfer latencies of the multicast messages injected from Sn

are then reported in Fig. 10. The figures shows that the PA
YP prototype (See also Subsection IV-C) exhibits the best
performance over the other prototypes.

Generally, the mesh planar (PA XP, PA YP and PA ZZ)
prototypes give better performance than the mesh XY pro-
totype specifically in this scenario, because the mesh planar
prototypes have higher bandwidht capacity in the double
vertical links connecting the NORTH and SOUTH ports. The
mesh planar PA YP presents also the best performance in this
scenario, because routing multicast packets firstly to vertical
direction will reduce the possibility of multicast contentions
to occur. The general result of this measurement is only
valid in this scenario. When the traffic is low or medium
high, the planar adaptive routing algorithms give always better
performance. In a certain traffic pattern (especially if the traffic
is very high), the performance of the static tree-based multicast
is often better than the planar adaptive multicast routing.
However, one general result that satisfies our expectation is,
that the multicast deadlock configuration can be successfully
tackled regardless of the multicast routing algorithm choice.

VI. SYNTHESIS RESULTS

Our router prototypes have been synthesized using CMOS
130-nm and 180-nm standard-cell libraries from UMC (United
Microelectronics Corporation). Table II presents the synthesis
reports of the number of consumed logic cells and estimated
logic cell area for standard multicast mesh router using static
XY routing algorithm and extended multicast mesh router us-
ing planar adaptive routing algorithm with Y-direction adaptive
priority (PA YP prototype). It looks that the cell area overheads
to synthesis mesh PA YP prototype over mesh XY prototype
are 47% and 49% using 130-nm and 180-nm UMC technology
respectively. The significant area overheads are due to the use

TABLE I
TAIL FLITS ACCEPTANCE LATENCY MEASUREMENT

Target Tn.m

Sn Alg. Tn.1 Tn.2 Tn.3 Tn.4 Tn.5 Tn.6

S1

XY 14318 14334 14320 14322 14318 14314
PA XP 12264 12272 12276 12272 12264 12268
PA YP 9538 9556 9546 9554 9538 9540
PA ZZ 12274 12278 12282 12280 12270 12274

S2

XY 14322 14326 14326 14336 14320 14320
PA XP 12270 12266 12276 12292 12270 12272
PA YP 9546 9548 9546 9556 9544 9540
PA ZZ 12264 12272 12264 12274 12262 12258

S3

XY 14332 14332 14320 14320 14324 14330
PA XP 16360 16360 16352 16352 16352 16358
PA YP 9548 9554 9540 9546 9542 9546
PA ZZ 12278 12276 12274 12270 12266 12266

S4

XY 18402 18398 18404 18392 18390 18396
PA XP 18400 18396 18402 18390 18388 18394
PA YP 9556 9556 9556 9546 9544 9548
PA ZZ 12278 12278 12278 12266 12266 12270

S5

XY 14320 14304 14342 14344 14348 14350
PA XP 8190 8180 8210 8210 8216 8210
PA YP 12272 12256 12272 12272 12292 12292
PA ZZ 12274 12242 12260 12260 12290 12294

S6

XY 14322 14320 14360 14358 14340 14348
PA XP 8186 8182 8216 8212 8198 8202
PA YP 12270 12266 12290 12286 12278 12284
PA ZZ 12270 12266 12300 12296 12278 12286

S7

XY 14300 14322 14340 14348 14348 14344
PA XP 12260 12280 12292 12302 12302 12294
PA YP 8176 8202 8206 8214 8218 8196
PA ZZ 8176 8184 8206 8214 8200 8192

S8

XY 18402 18386 18422 18414 18422 18422
PA XP 18400 18384 18420 18412 18420 18420
PA YP 8196 8188 8220 8198 8216 8216
PA ZZ 8196 8170 8194 8186 8216 8216

Fig. 10. The maximum tail flit transfer latency per multicast message.

of adaptive routing mechanism and extra I/O ports in the mesh
planar adaptive router microarchitecture.

Fig. 11 presents the circuit layout of the mesh planar PA YP
prototype using Cadence Silicon Encounter tool. The cell area
of the IDM units are highlighted in the figure with bright color.
In the future, the power dissipations of the NoCs over various
traffic scenarios will be analyzed. In our previous investigation
[18], we have evaluated that the area overhead to update the
NoC from unicast to multicast with 8-register buffer size and
the same static XY routing algorithm and the same standard
mesh router is only about 15%.



TABLE II
SYNTHESIS RESULT

Mesh Router Type Mesh MC XY Mesh MC PA YP

UMC CMOS techn. 130-nm 180-nm 130-nm 180-nm

Num. of cells 7607 7418 11104 11038

Num. of nets 7855 7757 11444 11460

Total cell area (mm2) 0.107 0.187 0.157 0.278

Num. of ports (pin) 420 420 584 584

Fig. 11. Automatic place and route of the multicast mesh router PA YP
prototype using 180-nm standard-cell library from UMC.

VII. CONCLUSION

The novel scheduling mechanism for tree-based multicast
routing using deadlock-free static and partially planar adaptive
routing algorithms has successfully solved the multicast dead-
lock configuration problem in the intermediate nodes of the
NoC. By using the hold-release scheduling rule and the ability
of the on-chip router to interleave flits of different messages
in the same queue, the multicast deadlock problem can be
solved easily. The methodology can also guarantee lossless flit
acceptance in multiple destination nodes even if the size of the
multicast messages is very long (e.g., a streaming data in video
application). There is also no out-of-order delivery problem,
even if the adaptive routing algorithms are used because of the
packet format choice and the dedicated working organization
of the combined router hardware logic and routing look-up
table units.

In general, our proposed NoC prototypes with planar adap-
tive routing algorithm can give better performance using a
certain test traffic scenario because of the higher bandwidth
capacity of the NoC in double vertical links connecting
NORTH and SOUTH ports. Nevertheless, this performance
gain must be paid by logic area overhead to implement the
mesh planar router architecture.

The development of low-level message passing and dis-
tributed shared-memory programming models for a multipro-
cessor system under XHINoC platform is now in progress.
Some open core MIPS processors are connected to XHINoC
routers via a customized network-interface. We can now
involve multicast instructions at higher protocol layer, because
the multicast service has been implemented in the network
and data-link layers. In the future, we will also develop
a heterogeneous NoC-based system by integrating some IP
components and open embedded processor cores to evaluate
the efficiency of the multicast communication for certain
applications.
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