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Abstract— On-chip interconnection networks or Network-on-
Chips (NoCs) are becoming the de-facto scaling communication
techniques in Multi-Processor System-on-Chip (MPSoC) or Chip
Multiprocessor (CMP) environment. However, the current traffic
models for on-chip interconnection networks are insufficient to
capture the traffic characteristics as well as evaluate the network
performance. As the technology scaling enables the increase
of available on-chip resources and innumerable new network
architectures are proposed, there is a need to make NoCs more
application-specific. Therefore, a traffic model to characterize
such an application-specific network is necessary. In this paper,
we propose a generic traffic model for on-chip interconnection
networks. Our traffic model is based on three empirically-
derived statistical characteristics using temporal and spatial
distributions. With captured parameters, our model can generate
accurate traffic patterns recursively to show similar statistical
characteristics of the observed on-chip networks. Therefore, using
the proposed traffic model defined by captured statistics, any kind
of on-chip interconnection traffic patterns can be reproduced.

I. INTRODUCTION

As the number of integrated IP cores in the current System-
on-Chips (SoCs) keeps increasing to meet the design re-
quirements for computation-intensive applications and highly
integrated low power solutions, communication requirements
among cores can not be sufficiently satisfied using either
traditional or multi-layer bus architectures because of their
poor scalability and bandwidth limitation on a single bus.
While new interconnection techniques have been explored to
overcome such a limitation, the notion of utilizing Network-
on-Chip (NoC) technologies for the future generation of high
performance and low power chips for myriad of applica-
tions, in particular for wireless communication and multimedia
processing, has been of great importance [1]. By applying
network-like communication which inserts routers in-between
each communication object, the interconnection network im-
proves scalability and freedom from the limitation of complex
wiring. Replacement of SoC busses by NoCs will follow the
same path as data communication systems where from the
economics point of view NoC can potentially reduce SoC
manufacturing cost, time to market, time to volume, and design
risk and at the same time improve performance. According to
[2], the NoC approach has a clear advantage over traditional
busses and most notably as far as the system throughput
is concerned. Though hierarchies of crossbar or multi-layer

busses have characteristics somewhere in between traditional
busses and NoC, they still fall far short of the NoC with respect
to performance and complexity. Recently many researchers
have proposed various routing algorithms as well as different
router architectures appropriate for on-chip interconnection
network environments.

In order to evaluate the performance of either these routing
algorithms or their routers, including implementations, many
researchers have used conventional traffic patterns [3], [4]
or some limited number of real traffic traces. Even though
these static traffic patterns exhibit similar patterns of some
particular applications, there is a fundamental limit in covering
complete traffic patterns of real applications. For this reason,
some researchers have used real traffic patterns extracted
from real applications to evaluate the performance of their
proposed routing algorithm or router based on more practical
benchmarks [5], [6].

In traditional networks such as Internet, Ethernet, and wire-
less LANs transporting TCP/IP, HTTP, and FTP traffic among
others, network traffics have been traced and analyzed to un-
derstand the traffic behavior of these networks and characterize
them. Therefore, various extensive traffic models for diverse
networks have been developed [7], [8], [9], [10], [11], [12],
[13], [14]. These models provide not only meaningful insight
into understanding the traffic behavior of these networks, but
have also been effectively used in evaluating current and newly
designed networks. Because on-chip interconnection network
is a new class of networks where the overall communications
occur in a single chip, a similar approach to understanding
the behavior of NoC traffic and evaluating networks in NoC
environment is needed.

In this paper, we propose a generic traffic model for
NoC environments. The proposed model is based on the
spatial/temporal profile of traffic using three statistical pa-
rameters. These three statistical parameters construct node
burstiness, node injection rate, and the distribution of source-
to-destination pairs. Different from the other previous propos-
als where statistical parameters were extracted from overall
nodes and formulated in a single statistic model of each
component, each statistical parameter is extracted from each
node and the associated statistic model is constructed per node.
Therefore, the degree of accuracy of the proposed traffic model



TABLE I
CONVENTIONAL STATIC TRAFFIC PATTERNS [3]

Name Pattern
Random λsd = 1/N
Permutation

Bit permutations
Bit complement di =∼ si

Bit reverse di = sb−i−1

Bit rotation di = si+1 mod b
Shuffle di = si−1 mod b
Transpose di = si+b/2 mod b

Digit permutations
Tornado dx = sx + (dk/2e) mod k
Neighbor dx = sx + 1 mod k

in emulating real traffic situation is much higher than the
previous work.

The organization of this paper is as follows. Section 2 pro-
vides previous related works in the field of traffic modeling and
motivation of this paper. Next, Section 3 explains an overview
of our traffic model with three different statistical components
for NoC. In Section 4, the details of each component are pre-
sented and the overall procedure of generating traffic pattern
with the given parameters is described. Section 5 validates the
accuracy of the proposed traffic model by comparing it with
real traffic traces. Finally, Section 6 concludes this paper.

II. RELATED WORK

Conventional traffic patterns consider the spatial distribution
of messages in interconnection networks. Therefore, the distri-
bution between source nodes and destination nodes is defined
depending on the type of conventional traffic patterns. Table I
lists some common static traffic patterns used to evaluate
interconnection networks. In Table I, In conventional traffic
patterns, random traffic is described by a traffic matrix with
all fraction of traffic sent from node λsd as 1/N . Permutation
traffic, in which all traffic from each source is directed to
one destination, can be more compactly represented by a
permutation function. Bit permutations are those in which
each bit di of the b-bit destination address is a function of
one bit of the source address, si. In digit permutations, each
(radix-k) digit of the destination address dx is a function
of a digit sy of the source address. Historically, several of
these patterns are based on communication patterns that arise
in particular applications. For instance, matrix transpose or
corner-turn operations induce the transpose pattern, whereas
fast Fourier transform (FFT) or sorting applications might
cause the shuffle permutation, and fluid dynamics simulations
often exhibit neighbor patterns [3].

While these models enable a network to be stressed with
a regular, predictable pattern and provide NoC researchers
with helpful insights, they do not cover real application
traffics to explore a realistic NoC design-space. Until now,
few researches have been able to present results in the field
of realistic NoC traffic models. Varatkar and Marculescu [15]
have reported the evidence of self-similarity in NoC burst
traffic between on-chip modules in typical MPEG-2 video

applications and captured traffic characteristics between pair-
wise nodes. Also using a generic tile-based communication
architecture, they proposed a technique for synthetically gen-
erating traces having statistical properties similar to those
obtained from real video clips. Soteriou et al. [16] proposed
an empirically-derived model of NoC traffic based on traffic
traces obtained from full system simulations. Their model
comprehensively espouses the spatio-temporal characteristics
of traffic with three dimensionless statistical components in a
three-tuple model. Also they illustrate two potential uses of
their traffic model: how it allows us to characterize and gain
insights on NoC traffic patterns, and how it can be used to
generate synthetic traffic traces that can drive NoC design-
space exploration. Tedesco et al. [17] presented application
driven traffic modeling for NoCs. In their work, applications
are characterized according to their delivery requirements (e.g.
real-time streaming and block transfer) and QoS service levels
(e.g. CBR and VBR). Also they identify three methods to
model traffic: constant injection rate is the most commonly
used, but least accurate. Probabilistic methods are normally
used in simulation for applications with variable rates. Finally
trace-based traffic models are more suitable for emulation.

III. OVERVIEW

We propose a generic traffic model for NoC based on
traffic traces obtained from full system simulation or real
system devices. This model combines the spatio-temporal
characteristics of traffic with three independent components,
(Hs, λs, δ(s,d)) where s and d represent the indices of
source node and destination node, respectively. With three
independent components, the given traffic can be analyzed
and characterized in a statistical manner. Different from the
approach used in [16], each statistical component is derived
per node. To define the burstiness of each node, the Hurst
exponent Hs for source node s, is adopted. As a component
of the characteristics of self-similarity, Hs determines the
temporal burstiness of traffic at each node, that is, the peak
size of injection packets and their injection patterns of arrival
time. To define one of spatial properties in NoC traffic traces,
the distribution of average injection rate at every node, denoted
by λs is captured. Finally δ(s,d) representing the distribution
of traffic ratio from s node to d node in the given injection
rate λs is extracted.

For each component of our (Hs, λs, δ(s,d)) traffic model,
we analyze and extract the proposed statistical distribution
against 8 traffic traces used in [18]. Those are SPLASH-2 [19]
traces gathered by running the benchmarks on Bochs [20], a
multiprocessor simulator with an embedded Linux 2.4 kernel.
Each benchmark was run in Bochs with 49 (= 7×7) concurrent
threads, and the memory trace is captured. This memory trace
is then applied to a memory system simulator that models
the classic MSI (Modified, Shared, Invalid) directory-based
cache coherence protocol, with the home directory nodes
statically assigned based on the least significant bits of the
tag, distributed across all processors in the entire chip.



IV. TRAFFIC MODELING

In this Section, we explain the details of our (Hs, λs, δ(s,d))
traffic model. Based on the extracted parameters, the procedure
for generating a synthetic traffic trace will be provided as well.

A. Temporal Burstiness: Hs

In classic networks, self-similarity is one of the key features
to characterize burstiness as well as long-range dependence
(LRD) of traffic in the temporal sense. To measure such a
burstiness and LRD, the Hurst parameter H is used where
H ∈ (1/2, 1) indicates the presence of LRD. As many
communication traffics are proven to be statistically self-
similar, some researchers already showed that the traffic in
NoC also has a self-similar characteristic [15], [16]. Thus,
we parameterize such a degree of burstiness or LRD using H .
Furthermore, in order to be accurate, this parameter indicating
the burstiness is analyzed on every injection node.

Because the definitions of self-similarity are well described
in the literature, in this Section, a brief description of self-
similarity will be introduced. For more details, the reader is
recommended to read several references [7], [8], [9], [21].

Considering a cumulative process Y (t) with stationary
increments, let Xt be its corresponding incremental process:

Xt = Y (t)− Y (t− 1) (1)

The process X
(m)
s is defined as an aggregated process of Xt

if

X(m)
s = [Xsm−m+1 + Xsm−m+2 + . . . + Xsm]/m (2)

Process Xt is self-similar if Xt is indistinguishable from
X

(m)
s . Because this is a very restrictive definition, usually

second-order self-similarity is considered for traffic analysis,
i.e. auto-covariance of the original and aggregated processes
should be same:

γ(m)(k) = γ(k) (3)

lim
m→∞

γ(m)(k) = γ(k) (4)

where γ(k) = E[(Xt − µ)(Xt+k − µ)] and γ(m)(k) =
E[(X(m)

s −µ)(X(m)
s+k−µ)]. The process Xt is exactly second-

order self-similar or asymptotically second-order self-similar
if Eq. (3) or Eq. (4) is satisfied, respectively.

In order to measure the degree of self-similarity, the Hurst
parameter H is used where a process is self-similar with
parameter H(0 < H < 1) if:

Y (t) = kHY (kt), ∀k > 0, t ≥ 0 (5)

which means that the original and normalized aggregated
processes should have the same distribution. In other words,
the self-similarity can be understood as the ability of an
aggregated process to preserve the burstiness of the original
process, i.e. the property of slowly decaying variance:

var(X(m)) ∼ m2H−2 (6)

In this paper, Eq. (6) is computed to measure the Hurst
parameter H . Table II shows the measured H value per node
for eight different traces.

B. Injection Rate: λs

As one of the spatial parameters in our traffic model,
traffic injection rate determines the distribution of injection
load per node. In [16], this spatial injection distribution is
parameterized by the standard deviation σ of the injection
distribution with an actual coordinate assignment. In that ap-
proach, it assumes that the actual results possess Gaussian-type
distributions. Even though that approach can help the injection
distribution be quantified using single σ value, the mapping to
Gaussian-like distribution is not alway accurate in real NoC
traffic situation. Also it requires large amount of computation
to find out the exact coordinate assignment. Hence, in this
paper, the original distribution of injection rate on every node
is kept as it is. This enables more accurate synthetic traffic
generation than σ-based Gaussian-like distribution. Figure 1
shows injection rate distributions for traffic traces in a 7×7
mesh.

C. Spatial Distribution: δ(s,d)

Another spatial distribution δ(s,d) represents the traffic ratio
from source node s to destination node d based on the injection
rate λs. In [16], spatial hop distribution p is adopted. In order
to formulate the hop count distribution model, they applied the
mechanism so that the mapping should not choose a receiver
whose distance is d hops from the sender unless it cannot
choose any other node whose distance to the sender is less
than d. Also, in that model, there is no concern about the
geometry of destination nodes. In other words, all nodes with
same d-hop distance from the source node are considered to
have the same statistical characteristics. Thus, this assumption
is somehow far from the actual NoC traffic regardless of
the optimal communication mapping. However, our model
considers the difference of location of destination nodes within
same distance of hops when the traffic ratio between source
and destination node is analyzed. Moreover, the matrix of
traffic ratio from each source node is constructed in order to
characterize the spatial distribution of source/destination pairs.
Figure 2 illustrates the distribution of traffic ratio for each node
in the barnes application.

D. Synthetic Traffic Generation

To describe how our (Hs, λs, δ(s,d)) traffic model can
generate synthetic network traffic, we implemented tgNePA,
a tool that automatically generates NoC traffic of the given
network topology from the configured (Hs, λs, δ(s,d)) traffic
model. Figure 3 shows the traffic generation flow in tgNePA.

tgSelfSimilar: Traffic generation based on (Hs, λs). To
generate self-similar NoC traces, tgNePA uses the method
described in [22]. In this method, the synthetic self-similar
traffic is obtained by aggregating multiple sub-streams, each
consisting of alternating Pareto-distributed on/off periods.
Pareto distribution is defined by a heavy-tailed distribution
with the probability-density function f(x) = abα/xα+1, x ≥ b
where α is a shape parameter, and b is a location parameter.
Pareto distribution with 1 < α < 2 has a finite mean and



TABLE II
MEASURED HURST PARAMETER FOR TRAFFIC TRACES IN 7×7 MESH

barnes fft
0.95322 0.930023 0.976069 0.976115 0.931223 0.958229 0.967662 0.975095 0.941273 0.948791 0.964113 0.951594 0.956773 0.961565

0.953165 0.958007 0.906468 0.927599 0.932508 0.952065 0.938917 0.95084 0.951059 0.966805 0.966816 0.960732 0.952544 0.963932
0.961447 0.950251 0.960211 0.976686 0.923968 0.9375 0.864216 0.95335 0.978645 0.977989 0.962314 0.958788 0.968619 0.963367
0.958195 0.890648 0.918889 0.93756 0.958898 0.927886 0.904769 0.961431 0.973687 0.992332 0.959887 0.96177 0.968292 0.964245
0.956649 0.985442 0.939089 0.920304 0.904582 0.938582 0.885551 0.964755 0.972209 0.972016 0.97097 0.990788 0.968756 0.974325
0.961257 0.88265 0.938839 0.95921 0.96127 0.917485 0.928582 0.993044 0.972676 0.971063 0.975506 0.976879 0.973728 0.970238
0.869166 0.965638 0.895383 0.906786 0.909061 0.883905 0.88992 0.975961 0.980018 0.977654 0.973719 0.968751 0.964043 0.960366
lu ocean
0.924199 0.953505 0.956322 0.953416 0.955267 0.961355 0.949458 0.880499 0.808062 0.794881 0.845817 0.799616 0.816938 0.832904
0.958744 0.95534 0.953154 0.954404 0.954908 0.952774 0.956247 0.7324 0.784654 0.830542 0.826276 0.77571 0.753008 0.795864
0.954391 0.967936 0.985967 0.980213 0.953937 0.95738 0.956906 0.901085 0.865756 0.723628 0.749781 0.781642 0.752834 0.742008
0.959172 0.982929 0.961082 0.954406 0.95408 0.967851 0.956651 0.802515 0.757628 0.798828 0.75681 0.760965 0.790886 0.750362
0.963854 0.9776 0.95748 0.965053 0.992639 0.962783 0.954991 0.82159 0.810766 0.726558 0.748242 0.777665 0.78399 0.78296
0.967356 0.950398 0.952623 0.964804 0.954611 0.961498 0.962472 0.818765 0.770188 0.809174 0.785652 0.803659 0.762584 0.782661
0.956253 0.960129 0.957397 0.95746 0.957518 0.95611 0.954621 0.837008 0.761783 0.87089 0.763205 0.77494 0.78582 0.778135
radix raytrace
0.902839 0.944403 0.96101 0.972136 0.964553 0.947608 0.985433 0.942255 0.961226 0.940355 0.962855 0.95834 0.932357 0.963871
0.957888 0.942072 0.971374 0.973585 0.966459 0.964246 0.977311 0.945377 0.948391 0.943875 0.936158 0.964887 0.943996 0.961554
0.964332 0.957286 0.980439 0.98841 0.983089 0.985034 0.974669 0.945114 0.957771 0.974867 0.950478 0.960309 0.968862 0.945402
0.969146 0.983704 0.971503 0.977166 0.96415 0.981327 0.957322 0.92635 0.967857 0.956754 0.949919 0.951917 0.974327 0.968231
0.973206 0.982417 0.97069 0.960063 0.975664 0.963702 0.969817 0.929483 0.961821 0.964149 0.936166 0.974707 0.941642 0.946531
0.93137 0.966252 0.969756 0.975648 0.958885 0.963826 0.96038 0.949944 0.93797 0.93593 0.943694 0.958023 0.934166 0.947076

0.946714 0.966286 0.961873 0.944223 0.947943 0.965468 0.962096 0.963812 0.963292 0.934751 0.959196 0.958551 0.960313 0.949267
water-nsquared water-spatial
0.938858 0.954619 0.961653 0.961435 0.964605 0.959879 0.983422 0.954124 0.941421 0.96231 0.980993 0.970395 0.968765 0.979926
0.958101 0.944468 0.963525 0.957574 0.95899 0.957685 0.966726 0.967107 0.964892 0.976365 0.954031 0.954496 0.95555 0.951143
0.954599 0.952399 0.978571 0.973547 0.959643 0.974414 0.978607 0.956379 0.958845 0.985977 0.992441 0.946157 0.954781 0.949645
0.995104 0.974171 0.963846 0.987655 0.952222 0.966112 0.952725 0.950117 0.957826 0.949018 0.943914 0.948824 0.960112 0.94836
0.951494 0.971262 0.954555 0.958582 0.982684 0.958186 0.965041 0.94065 0.939393 0.957809 0.954648 0.962962 0.949257 0.950307
0.958905 0.95965 0.959323 0.961995 0.965036 0.963629 0.962181 0.95947 0.95342 0.956035 0.95468 0.955787 0.955492 0.955214
0.961457 0.955258 0.957095 0.965474 0.952312 0.959847 0.965554 0.969339 0.965527 0.963964 0.966033 0.961421 0.960948 0.962182
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Fig. 1. Injection rate distributions for traffic traces in 7×7

an infinite variance. To generate Pareto-distributed values, the
following formula is used: XPareto = b/[U1/α] where U is a
uniform random variable (0 ≤ U ≤ 1). The Hurst parameter H
of self-similar trace generated by this method can be derived
by H = (3− α)/2 [22], [23].

Additionally, while generating Pareto-distributed values, the
injection rate for each sub-stream can be controlled. Therefore,
by applying λs to each generation of self-similar stream for
the corresponding node s, the (Hs, λs) configured self-similar
traffic can be obtained.

Depending on the method of self-similar traffic generation,
its accuracy may be varied. To minimize the error between the
expected (Hs, λs) and the measured value from the generated

traffic, a recursion is applied as shown in the first phase
tgSelfSimilar of Figure 3. Along with generating self-similar
traffic with the expected (Hs, λs) configuration, (H ′

s, λ′s)-
tuple components of the generated traffic are measured. If the
error of the expected (Hs, λs) and the measured (H ′

s, λ′s) is
acceptable, then the generated self-similar traffic is delivered to
the next step splitPE. Otherwise, the generation of self-similar
traffic with the similar configuration is repeated.

splitPE: Traffic generation based on δ(s,d). The second
phase generates the destination node upon the generated self-
similar traffic of each node. Because the ratio of traffic from
each source node s to each destination node d is already pro-
vided by the distribution of δ(s,d), the generation of destination
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Fig. 2. Distributions of traffic ratio on selected nodes for barnes traffic trace in 7×7
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node for each instance of traffic from the corresponding source
node s can be accurately controlled randomly. Different from
the Trident’s approach [16], the ratio of traffic for each pair of
source and destination is separately assigned. Therefore, the
distribution of source/destination pairs can be more accurately
emulated.

V. VALIDATION

Each synthetic traffic is generated using the analyzed (Hs,
λs, δ(s,d)) for each application mentioned in the previous

Section. In order to control the recursion of tgSelfSimilar, we
set the marginal error bound of Hs and λs to 5%. In recursive
generation of self-similar traffic for each node, the Hurst
parameter Hs can be easily matched with the given marginal
percentage. However, in matching the lower injection rate λs,
it requires excessive computation time. For that reason, to
reduce such a large computation time in matching the injection
rate, a proportional margin value is applied as an alternative
approach. That is, in relatively higher injection rate, the tighter
margin value is applied. Reversely, in relatively lower injection



rate, the lighter margin value is applied. For instance, by using
logarithmic scale of injection rate, the marginal value can
be scaled by multiplying | log10(λs)|| log10(λs)|. Because the
higher injection rate is dominant, the effect of larger error
at source nodes with lower injection rates can be minimized.
Table III and Table IV show the measured Hurst parameter
and injection rates of synthetic traffic according to the an-
alyzed traffic model of each application. For Hs parameter
in synthetic traffic, the accuracy is in the range of 2.7% to
4.3% average error bound. However, the accuracy of λs is
varied depending on the level of injection rates of applications
because the propotional margin value to the level of injection
rates is applied in matching the injection rate during the
first phase of traffic generation. For instance, in barnes

application, the average of injection rates of original traffic is
0.065 and the ratio of average error in injection rates is 6.8%.
On the other hand, in fft application, the average of injection
rates of original traffic is 0.0089 and the ratio of average error
is 26%. In this case, the level of injection rates is relatively low,
i.e. the scale factor to apply a propotional margin is 27 (=33)
during the recursion. Therefore, the resultant synthetic traffic
has relatively large error from the original injection rates.

For source/destination distribution δ(s,d) of synthetic traffic,
its accuracy is almost 100% as shown in Figure 4.

Finally, throughout the cycle accurate NoC simulation [24],
[25] using original traffic traces as well as synthetic traffic
traces, the accuracy of overall network performance is ob-
served. As shown in Table V, the synthetic trafic patterns for
applications except for fft and raytrace have maximum
17% error from the perspective of the offered load. For two
exceptional applications with high error ratio in the offered
load, their offered load is relatively low. Therefore, even a
small difference results in a large percentage of error ratio.

VI. CONCLUSION AND FUTURE WORKS

We proposed a generic traffic model for on-chip intercon-
nection networks. To keep the temporal and spatial distribution
of traffic traces, every statistical information is measured
per node. In order to characterize the burstiness of injection
nodes, the Hurst parameter Hs is selected. For specifying the
temporal statistics, the distribution of injection rates λs and
ratio of source/destination pairs δ(s,d) on the given source
node are used. With the proposed traffic model, we also
introduced a recursive traffic generation method to minimize
the error of statistical components, and allow synthetic traffic
traces with similar temporal and spatial statistics to be gen-
erated. Throughout detailed comparison of each component
and performance simulation, our proposed traffic model can
reconstruct traffic patterns with a similar tendancy of real NoC
traffic and provide insights into NoC traffic.

As the future works, an advanced methodology needs to
be developed to validate the accuracy of synthetic traffic
patterns. In this paper, only the statistical measurement such
as comparing average parameters, which does not evaluate the
accuracy in time, is used. To be scalable, the proposed traffic
model should be tested in different size or type of networks.
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TABLE III
MEASURED HURST PARAMETER FOR SYNTHETIC TRAFFIC TRACES IN 7×7 MESH

barnes fft
0.922604 0.900864 0.929619 0.932654 0.887087 0.924292 0.924685 0.930469 0.901261 0.904385 0.919863 0.905215 0.920039 0.927163
0.910217 0.92359 0.894023 0.892669 0.900064 0.922199 0.916118 0.918589 0.930192 0.932514 0.93347 0.921322 0.913654 0.953305
0.913906 0.924976 0.918239 0.93298 0.878349 0.890662 0.87693 0.907441 0.929731 0.931737 0.91638 0.911257 0.935479 0.91756
0.933494 0.873282 0.90397 0.912061 0.924956 0.891938 0.887996 0.927311 0.927169 0.950335 0.933219 0.934989 0.923255 0.925058
0.926644 0.949166 0.894207 0.888905 0.879505 0.917606 0.898869 0.930802 0.92372 0.95463 0.924153 0.942931 0.920807 0.942047
0.940055 0.898484 0.894776 0.911445 0.925797 0.888928 0.922339 0.950361 0.932204 0.937753 0.935888 0.929717 0.925567 0.928409
0.831892 0.917855 0.917632 0.892862 0.879119 0.886606 0.862894 0.944464 0.931497 0.933646 0.927396 0.928349 0.932712 0.920281

average error ratio = 0.032 average error ratio = 0.041
lu ocean
0.920638 0.913734 0.926406 0.914993 0.912014 0.929957 0.930625 0.8483 0.783373 0.770411 0.875487 0.766814 0.828058 0.824162
0.915871 0.913395 0.923574 0.93993 0.914495 0.925637 0.910338 0.739303 0.77524 0.798285 0.8164 0.80788 0.719764 0.780451
0.919504 0.95263 0.937157 0.935734 0.908091 0.915819 0.916393 0.895681 0.849855 0.709589 0.728271 0.758329 0.756766 0.705397
0.917747 0.936518 0.91593 0.915539 0.912704 0.94054 0.92322 0.841761 0.745178 0.807255 0.721676 0.736948 0.787291 0.71473
0.919705 0.933109 0.91106 0.918234 0.944434 0.923524 0.913384 0.837015 0.799498 0.699795 0.717817 0.815538 0.754053 0.804242
0.926757 0.904367 0.90686 0.927362 0.912072 0.916251 0.91677 0.805689 0.780835 0.790708 0.818814 0.764959 0.742495 0.753796
0.917779 0.929412 0.920856 0.918243 0.920673 0.918731 0.924098 0.799607 0.76778 0.853409 0.795997 0.752484 0.785473 0.752427

average error ratio = 0.039 average error ratio = 0.027
radix raytrace
0.887586 0.927803 0.92179 0.927197 0.920037 0.902051 0.94445 0.90344 0.923164 0.94793 0.921658 0.919907 0.930598 0.916547
0.912924 0.912437 0.92907 0.935315 0.930807 0.920588 0.93943 0.933545 0.915805 0.938897 0.945765 0.93872 0.899207 0.93716
0.94104 0.929403 0.936362 0.946848 0.956438 0.937805 0.931888 0.908462 0.912697 0.931622 0.937748 0.918021 0.927636 0.909152

0.941251 0.936482 0.925917 0.930899 0.918615 0.940462 0.915708 0.953294 0.941418 0.915519 0.924081 0.906276 0.946177 0.926767
0.928504 0.94163 0.923772 0.921857 0.933592 0.916538 0.9224 0.919059 0.916655 0.923873 0.925912 0.949737 0.902823 0.905981
0.892508 0.92093 0.927384 0.932629 0.915048 0.933493 0.91771 0.953268 0.903407 0.921178 0.905038 0.914827 0.890978 0.909914
0.923702 0.926957 0.916387 0.906687 0.904082 0.917981 0.93198 0.934584 0.917112 0.917526 0.934793 0.918665 0.937771 0.920748

average error ratio = 0.041 average error ratio = 0.032
water-nsquared water-spatial
0.898308 0.923437 0.940954 0.922098 0.923039 0.913735 0.934255 0.924825 0.907196 0.917813 0.935485 0.928298 0.923866 0.931682
0.937719 0.915814 0.925254 0.911514 0.913656 0.911644 0.930135 0.91907 0.921237 0.929094 0.907 0.929373 0.920545 0.915879
0.913194 0.919129 0.936486 0.927012 0.919423 0.930479 0.932936 0.924795 0.913452 0.938763 0.944932 0.8999 0.923134 0.906942
0.946839 0.928766 0.920046 0.945132 0.909967 0.92056 0.91277 0.907262 0.918599 0.904109 0.905521 0.91763 0.927629 0.90155
0.913586 0.923798 0.90929 0.913297 0.93518 0.913151 0.921679 0.901858 0.903175 0.930372 0.908927 0.917512 0.912481 0.926686
0.917045 0.914046 0.917961 0.918059 0.917218 0.919949 0.918271 0.920825 0.909482 0.909743 0.915424 0.927488 0.922289 0.920409
0.916328 0.948779 0.910059 0.925256 0.912018 0.919631 0.91887 0.931546 0.919134 0.919032 0.919456 0.925384 0.922665 0.92463

average error ratio = 0.043 average error ratio = 0.041

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ra
ti
o

x-direction

y-direction

(a) (0,0)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ra
ti
o

x-direction

y-direction

(b) (0,3)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

ra
ti
o

x-direction

y-direction

(c) (1,1)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

ra
ti
o

x-direction

y-direction

(d) (2,2)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

ra
ti
o

x-direction

y-direction

(e) (3,4)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ra
ti
o

x-direction

y-direction

(f) (4,1)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ra
ti
o

x-direction

y-direction

(g) (5,3)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ra
ti
o

x-direction

y-direction

(h) (6,1)

Fig. 4. Distributions of traffic ratio on selected nodes for synthetic traffic trace of barnes application in 7×7
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TABLE IV
COMPARISON OF INJECTION RATES BETWEEN ORIGINAL AND SYNTHETIC TRAFFIC TRACES IN 7×7 MESH

original traffic synthetic traffic
barnes

0.059230 0.053724 0.027742 0.072139 0.042431 0.022027 0.083564 0.082931 0.055818 0.034412 0.067748 0.044069 0.032461 0.099190
0.028138 0.026441 0.091737 0.040663 0.027105 0.018616 0.157872 0.034190 0.034794 0.100266 0.042767 0.025398 0.023744 0.175239
0.021208 0.034636 0.167460 0.051668 0.056595 0.171639 0.074054 0.023813 0.043012 0.187606 0.060602 0.057168 0.164082 0.080500
0.018661 0.168760 0.039418 0.035184 0.021129 0.190589 0.027948 0.023320 0.160879 0.043212 0.038176 0.021441 0.183314 0.036472
0.015542 0.290371 0.044580 0.043946 0.154056 0.052408 0.025951 0.017888 0.324491 0.062108 0.059061 0.153222 0.052371 0.026421
0.024136 0.064680 0.028955 0.018944 0.225996 0.028720 0.025712 0.025948 0.067938 0.031171 0.026097 0.254005 0.033386 0.029015
0.112588 0.033496 0.037716 0.046235 0.030914 0.038005 0.022475 0.115044 0.045602 0.046282 0.056193 0.035571 0.060112 0.027397

average error ratio = 0.066
fft

0.029666 0.021464 0.006244 0.008981 0.003974 0.004094 0.007642 0.044174 0.022187 0.011228 0.013225 0.007996 0.008160 0.011472
0.004875 0.005072 0.008658 0.006987 0.004060 0.006191 0.008248 0.009111 0.007835 0.015021 0.013979 0.008017 0.011784 0.015275
0.005504 0.012254 0.013928 0.004325 0.005509 0.008301 0.005121 0.009686 0.016122 0.018494 0.008304 0.009961 0.013941 0.009420
0.005197 0.010923 0.015967 0.006519 0.006589 0.010280 0.006026 0.010128 0.021058 0.019755 0.011395 0.010854 0.019347 0.010866
0.005839 0.013510 0.007209 0.007880 0.028822 0.009014 0.009372 0.010099 0.016749 0.013635 0.014502 0.029346 0.017603 0.017984
0.024218 0.006013 0.005391 0.005813 0.007263 0.005757 0.005479 0.028910 0.011271 0.013258 0.013190 0.017048 0.009654 0.010647
0.010977 0.006434 0.006770 0.009269 0.005420 0.007020 0.005331 0.020612 0.011626 0.012168 0.016830 0.010672 0.011232 0.010410

average error ratio = 0.27
lu

0.031522 0.031486 0.020856 0.023430 0.015734 0.022615 0.017442 0.035190 0.033321 0.024563 0.027929 0.016210 0.027098 0.020902
0.020890 0.021314 0.019032 0.020641 0.016205 0.020843 0.024755 0.022980 0.024165 0.022151 0.022552 0.018941 0.023302 0.029638
0.020656 0.026310 0.080935 0.062681 0.022026 0.032159 0.025184 0.024147 0.031387 0.084642 0.073180 0.025317 0.037863 0.028438
0.023138 0.066632 0.025918 0.021733 0.019832 0.038455 0.022993 0.026949 0.076103 0.028331 0.023800 0.021964 0.045441 0.027337
0.029276 0.062923 0.023083 0.026969 0.124827 0.022259 0.015869 0.034131 0.067290 0.025380 0.030227 0.131003 0.026182 0.018190
0.033716 0.017579 0.016078 0.023511 0.024204 0.022110 0.021272 0.039662 0.020108 0.017948 0.027392 0.027782 0.023304 0.024658
0.021180 0.021210 0.022325 0.025828 0.022391 0.016425 0.016723 0.024829 0.024846 0.026269 0.030037 0.026304 0.018605 0.019671

average error ratio = 0.13
ocean

0.032656 0.052407 0.053066 0.034972 0.028506 0.029530 0.030476 0.035787 0.057154 0.057344 0.040709 0.032434 0.034281 0.034655
0.059482 0.076336 0.048041 0.047850 0.035247 0.066863 0.082566 0.063344 0.083863 0.051858 0.053600 0.039598 0.070091 0.087853
0.086836 0.035133 0.147355 0.105736 0.030472 0.067765 0.047462 0.096221 0.039389 0.150070 0.109829 0.033589 0.066591 0.050848
0.033205 0.123656 0.033226 0.037146 0.090287 0.046643 0.037019 0.036830 0.128103 0.038558 0.038684 0.093770 0.050305 0.038934
0.031955 0.035925 0.056059 0.063624 0.060362 0.034188 0.035604 0.037264 0.041204 0.057429 0.063482 0.064157 0.036824 0.038539
0.086679 0.068636 0.064304 0.067920 0.113985 0.062790 0.078873 0.098110 0.074006 0.071210 0.077321 0.119170 0.066208 0.081037
0.134312 0.096478 0.077706 0.371114 0.106355 0.055866 0.069098 0.139972 0.103311 0.085479 0.383716 0.110420 0.059998 0.076108

average error ratio = 0.067
radix

0.085885 0.036942 0.013971 0.020770 0.013779 0.026615 0.075784 0.088893 0.044055 0.015655 0.023982 0.014646 0.031706 0.087981
0.020545 0.032627 0.068298 0.015802 0.014502 0.016102 0.086488 0.023399 0.039103 0.071430 0.017994 0.016906 0.018508 0.098817
0.015641 0.013742 0.045850 0.088507 0.023404 0.047885 0.018831 0.017750 0.016331 0.052414 0.106077 0.027570 0.055200 0.021370
0.029354 0.122007 0.030738 0.020711 0.043255 0.096830 0.024630 0.031458 0.125732 0.036056 0.021926 0.049505 0.114297 0.028689
0.021256 0.057330 0.027209 0.028700 0.050168 0.035776 0.018404 0.022906 0.065534 0.032163 0.032332 0.060077 0.040638 0.021660
0.100576 0.014770 0.022440 0.024386 0.019568 0.015721 0.019553 0.105422 0.016417 0.026233 0.027580 0.022311 0.018466 0.023020
0.063424 0.022736 0.014779 0.049019 0.025052 0.015360 0.012427 0.074280 0.026441 0.015996 0.056243 0.028725 0.017785 0.014806

average error ratio = 0.13
raytrace

0.023664 0.021465 0.007970 0.013069 0.016971 0.004876 0.008253 0.026600 0.024533 0.015101 0.015422 0.018870 0.007748 0.013036
0.002765 0.002812 0.004423 0.003225 0.005511 0.003513 0.010775 0.006357 0.006265 0.008340 0.005851 0.009994 0.006027 0.012393
0.004837 0.002790 0.034439 0.006664 0.003718 0.008369 0.002179 0.006846 0.005459 0.039667 0.013511 0.006941 0.016444 0.004676
0.003348 0.006765 0.001843 0.002009 0.002106 0.004217 0.002200 0.007861 0.013654 0.004120 0.003902 0.004186 0.008048 0.004354
0.002909 0.008605 0.002654 0.002212 0.009745 0.003546 0.003611 0.006384 0.012687 0.005938 0.004182 0.012975 0.007668 0.008029
0.009046 0.002361 0.002462 0.005211 0.013867 0.002560 0.002273 0.019626 0.005373 0.005123 0.007910 0.014637 0.004454 0.004494
0.006204 0.002753 0.002233 0.005590 0.002890 0.003757 0.002269 0.013494 0.004253 0.004473 0.008239 0.005175 0.007742 0.004435

average error ratio = 0.55
water-nsquared

0.022009 0.016074 0.006600 0.013258 0.008507 0.006761 0.032313 0.023661 0.018801 0.009436 0.014747 0.010829 0.008875 0.035534
0.009806 0.010507 0.013351 0.009940 0.010067 0.009624 0.014857 0.013117 0.012558 0.015723 0.014398 0.010760 0.011149 0.016496
0.010534 0.012138 0.029008 0.025092 0.013357 0.027807 0.032449 0.012128 0.013980 0.034044 0.028754 0.015152 0.031198 0.038481
0.085102 0.025618 0.011492 0.051211 0.008794 0.012639 0.009679 0.096370 0.027683 0.013569 0.057958 0.010880 0.014441 0.013205
0.008935 0.018494 0.009593 0.010994 0.042124 0.009718 0.010690 0.012895 0.020918 0.011417 0.012446 0.049889 0.013163 0.012201
0.010824 0.009237 0.008589 0.010808 0.015551 0.010871 0.009337 0.012715 0.012761 0.011246 0.012833 0.016926 0.013036 0.012725
0.012572 0.009745 0.008497 0.015741 0.010567 0.009653 0.016860 0.014897 0.012041 0.009559 0.018343 0.012647 0.013809 0.019778

average error ratio = 0.18
water-spatial

0.039134 0.024893 0.023346 0.041009 0.027349 0.025811 0.039816 0.045553 0.029164 0.026863 0.046777 0.031364 0.030894 0.046882
0.025982 0.026905 0.038835 0.020124 0.020240 0.013104 0.015139 0.027518 0.029762 0.044945 0.023105 0.023776 0.014670 0.017940
0.019024 0.021667 0.069799 0.099872 0.012199 0.012508 0.014645 0.022233 0.024674 0.080859 0.111213 0.014298 0.014812 0.016507
0.022947 0.031320 0.012389 0.019785 0.012086 0.027014 0.012403 0.025280 0.036956 0.013214 0.022760 0.013890 0.031608 0.014042
0.012658 0.021574 0.014751 0.012530 0.023434 0.012939 0.013315 0.014053 0.023360 0.016113 0.012756 0.024740 0.014915 0.015571
0.015907 0.011776 0.011851 0.011625 0.015237 0.012631 0.019781 0.018469 0.013941 0.013507 0.013421 0.016467 0.014772 0.021343
0.023773 0.014841 0.012444 0.019787 0.012952 0.012253 0.013045 0.026972 0.017753 0.014759 0.021032 0.014798 0.013726 0.014950

average error ratio = 0.14

TABLE V
COMPARISON OF CYCLE ACCURATE NOC SIMULATION BETWEEN ORIGINAL AND SYNTHETIC TRAFFIC TRACES IN 7×7 MESH

original traffic synthetic traffic error ratio (%)
application offered load avg. latency offered load avg. latency offered load avg. latency
barnes 0.06522 7.26 0.06951 7.32 6.58 0.86
fft 0.00889 8.20 0.01125 7.95 26.63 2.94
lu 0.03560 7.67 0.03240 7.52 8.99 2.17

ocean 0.06881 7.65 0.07345 7.78 6.75 1.70
radix 0.03690 7.96 0.04177 8.00 13.18 0.42

raytrace 0.00636 7.99 0.00987 7.95 55.21 0.53
water-nsquared 0.01649 7.93 0.01939 7.77 17.60 2.22
water-spatial 0.02221 7.99 0.02529 7.76 13.83 2.89


