
Hierarchical Agent Architecture for Scalable NoC
Design with Online Monitoring Services

Alexander Wei Yin, Liang Guang, Pasi Liljeberg, Pekka Rantala, Ethiopia Nigussie, Jouni Isoaho, Hannu Tenhunen
Department of Information Technology, University of Turku, Finland

{yinwei, liagua, pakrli, peaura, ethnig, jisoaho, hatenhu}@utu.fi

Abstract—Hierarchical Agent Architecture is proposed to pro-
vide online monitoring services to NoC-based systems. Based
on circuit conditions traced at the run-time, system settings
are monitored adaptively by agents at each architectural level.
This monitoring approach partitions various online diagnostic
and management services onto hierarchical implementation levels
so as to provide scalability and variability for large-scale NoC
design. This paper explains the monitoring interaction between
agent levels, and focuses on system optimization alternatives
handled by different agent levels. It further quantitatively an-
alyzes the feasibility and design alternatives in monitoring com-
munication interconnection upon regular tile-based NoC layout.
Though still under intensive research, the proposed architecture
is endowed with promising potential for highly-integrated NoC
design.

I. INTRODUCTION

With continuous technology scaling, the size of NoCs
(Network-on-chip) is constantly increasing. Parallelizing ap-
plications onto many processing elements leads to high po-
tential speedup as demonstrated by the recently released
TeraFLOPS processor [1] and TILE64 processor [2] which
integrate 80 and 64 cores respectively on a single chip.
In academia, thousand-core processors have been projected
and discussed [3]. However, system designers are challenged
with a number of daunting issues. Conventional concerns,
such as power consumption, will continue to pose tough,
if not stronger, constraints on design and implementation
methods. Especially the dramatic increase of leakage power in
sub-100nm technology requires urgent consideration from all
architectural levels [4]. New design considerations including
increasing influence from PVT (process, voltage and temper-
ature) variations [5] and unpredictable hardware and software
errors only exacerbate the design complexity. Variations and
faults also worsen the power constraints as the design margin
is lowered to tolerate parametric variations. To deal with these
issues, the system-level design method should support online
dynamic services at different implementation level, so as to
achieve maximum system efficiency with run-time coarse/fine-
granular tuning.

A few previous works have addressed system monitoring
services on NoC platforms [6, 7, 8]. From them, several
distinctive requirements for managing NoC structures in a
scalable manner can be identified. Firstly, local circuits need to
be provided with distributed monitoring modules. Distributed
monitoring reduces the local operation delay or interconnect

latency for urgent monitoring services, and it prevents the
appearance of communication bottleneck. However, despite
the system size, centralized monitoring is still an indispensable
complement to localized monitoring schemes. Theoretically,
a centralized monitor, with the knowledge of all on-chip
resources, is able to coordinate and balance the functioning
of all components with the aim of optimizing the overall
system performance. In practice, as an example, [9] adopts
a single processing unit for dynamic testing operations and
a global-level scheduler. For the scenario of thousand-core
NoCs with no concrete analysis available, an analogy to the
overwhelmingly complex nervous system of human beings
can help motivate the need of centralized monitors. The
human nervous system is a large-scale monitoring network
with numerous distributed neurons as local monitors. These
neurons are coordinated by upper-level centralized monitors
such as the spinal cord and the brain, which balance and
optimize the general body function. For either distributed
or centralized monitoring schemes, the energy efficiency of
monitoring services should be maximized.

We propose a hierarchical agent architecture endowed with
the required monitoring features. This architecture adds a
monitoring layer of agent hierarchy onto the NoC platform.
Agents are autonomous and adaptive monitors to be imple-
mented with various approaches, and they are responsible
for monitoring different architectural levels. Local agents pro-
vide fast and low-overhead monitoring services to individual
functional components, and report low-level conditions and
performance to higher-level agents. The latter supervise the
general system performance on a coarse granularity. This
architecture aims to achieve overall system performance by
balancing the monitoring among all on-chip resources, while
providing a wide design and synthesis space for the realization
of agents at each level.

This paper examines the functional partition of agent levels
and the monitoring interaction between them to perform mon-
itoring services with an joint effort (Section II). Upon a tile-
based NoC platform, we demonstrate the flexible incorpora-
tion of system optimization techniques with agent monitoring
architecture (Section III). As an extra communication layer
upon existing interconnect, alternatives in realizing agent
communications are examined quantitatively in Section IV,
which suggests an optimal design trade-off for monitoring
communication interconnects. Section V concludes the paper.

II. HIERARCHICAL AGENT MONITORING ARCHITECTURE

A. Agent Hierarchy

The architecture ranks the agents into four level: from the
top to the bottom level, a single application agent, a single
platform agent, distributed cluster agents (one per each cluster)
and distributed cell agents (one per each cell) (Fig. 1). The
application agent is a piece of software capturing application
functionality and run-time performance requirements and con-
straints. The platform agent, based on the application specifi-
cation and resource availability, utilizes appropriate resources,
maps and schedules the instructions onto the acquired re-
sources, configures the network, and monitors general system
performance during application execution. Each cluster agent
monitors a whole cluster, which is a group of processors
with accompanying components (caches, scratchpad memo-
ries, switches, links, etc.). A cluster is logically divided into
cells, each of which is a basic functional unit, such as a
processing unit, a switch or a link. The cells are equipped
with their own local monitors, the cell agents, which trace
and adjust the local circuit conditions.

API

…...

Application Agent

Platform Agent

Cluster Agents

Cell Agents

Initial requirements

Initial

Configuration

Initial

Configuration

System

performamce

(throughput,

power)

Reconfiguration

Commands

Modifying

requirements

Cluster

performance

Reconfiguration

Commands

Error

detection

and

recovery

Circuit

conditions

(current,

buffer load ..)

Circuit setting

(Vdd, Vth, Fclk ..)

Cluster setting

(Vdd, Vbs, Fclk ..)

Figure 1. Hierarchical Agent Monitoring Approach

B. Hierarchical Monitoring Approach

The proposed architecture highlights hierarchical ap-
proaches to various monitoring services, for instance power-
optimization and fault-tolerance, by the joint efforts from all
levels of agents.

Before execution, the platform agent utilizes a number of
resources and configures the network based on the initial ap-
plication requirements with power and performance awareness
[10]. A number of resources are reserved as spares in case of
component failures. The initial configuration is enforced from
the platform agent to the cluster and then cell agents.

After the application starts running, the cell agents are
tracing their local circuit conditions, such as current (including
leakage current for idle components), workload, and any faults
or failures (for instance a link failure or a malfunctioning

processing unit). Cell agents attempt to fix the errors if
feasible (for example by retransmission in case of transient
crosstalk-induced error [11]). The traced circuit conditions
along with not-solved-yet failures are sent to cluster agents.
Cluster agents attempt to adjust the cell settings based on these
information. For instance they may scale the supplies of a
certain cell (DVFS: dynamic voltage and frequency scaling)
or the threshold voltage by using ABB (adaptive body biasing
[12]). If a component has failed to work, they will acquire
spare components and configure them into the cluster. Cluster
agents send cluster performance to the platform agent. The
information concerning cluster performance is represented at
a coarser granularity than those sent between cluster and cell
agents, for example, the power consumption of the cluster, or
average network workload within the cluster, the error rate
of the cluster. Based on these information, the platform agent
may reconfigure the system, for instance assigning more spares
into a failure-prone cluster, or scale down the voltage and
frequency of a cluster with overwhelming power consumption.
The overall system performance, for instance the throughput
and the power consumption, is reported by the platform agent
to the application agent, which may modify the real-time
application requirements. Fig. 1 illustrates these hierarchical
monitoring interactions.

The hierarchical agent-based monitoring approach is dis-
tinctive as being scalable and implementation-flexible for
any-sized NoCs. The distributed cell agents, as physically
adjacent to the functional units and exclusively responsible for
local monitoring, can provide fast and fine-grained monitoring
services to local circuits. The cluster agents are exclusively
responsible for their own clusters, thus cluster-level monitoring
is still low-latent and requires limited amount of processing
capacity. The platform agent, though monitoring the whole
system, only handles the resources at a coarse granularity. For
instance, in terms of fault-tolerance, only errors which can
not be fixed by low-level agents are reported to and handled
by the platform agent. In this manner, no communication or
processing bottleneck will appear in any large-scale platform.
The supervision of higher level agents over lower-level ones
ensures the optimal overall system performance. Hierarchical
monitoring approach also provides a wide design and synthe-
sis space for implementing various management algorithms
and circuits. Low-level circuit optimization methods, such
as power or clock-gating can be implemented as dedicated
circuits triggered by cell agents. High-level component man-
agement methods, such as DVFS or ABB, can be enforced by
cluster level agents. Low-level circuit optimization should be
simple in terms of synthesis to offer fast operation with small
overhead. High-level operations can require more processing
power since they are typically much less frequent than low-
level operations. As the highest-level monitor, the platform
agent configures the system with optimal general settings, for
instance, an appropriate network connection to reduce inter-
cluster communication. Only with the concept of monitoring
hierarchy can various optimization methods be implemented
efficiently with different design and synthesis constraints.

III. HIERARCHICAL MONITORING SERVICES ON NOCS

A. Agent Mapping on Regular NoC Platform

To discuss the feasible mapping of agents on NoC plat-
form, we consider the regular tile-based mesh structure. A
conventional tile comprises of a PE (processing element), a
NI (network interface), a switch and the links. On such tile-
based NoC platform, we naturally locate a cell agent for each
tile, though distributed monitoring circuits may be located at
particular places within the cell, for instance, a power-gating
sleep-transistor on the link. The cell agent physically shares the
space with a processing element. The cluster agent is located
at fixed locations at design time, and cells are configured
into the clusters dynamically at the run-time. Depending upon
the complexity of cluster monitoring algorithm and maximum
number of cells to be monitored, a cluster agent may physi-
cally replace a conventional PE or still shares the space with a
PE. The application agent and the platform agent monitor over
the whole system; without application-specific knowledge, we
assume they are located together at the geographic center of
the tiling area. Fig. 2 illustrates the feasible mapping of agents
on the regular NoC structure.

Sw.

PE
Cell

agent

Cluster

agent

Sw.

PE

Cluster

agent

Sw.

PE
Cell

agent

Cluster

agent

Sw.

PE

Cluster

agent

Platform agent

Cell

agent

Cell

agent

Cell

agent

Cell

agent
Cell

agent

NI
NI

NINI

Application agent

Cell

agent

Cell

agent

Cell

agent
Cell

agent

Cell

agent

Cell

agent

Cluster

Cluster

Cluster

Cluster

Figure 2. Illustration of Agent Mapping on NoCs

To offer scalability for thousand-core systems, clusters can
be divided into hierarchical subclusters and similar monitoring
functional partition will be applied. It conceptually originates
from the manner a biosystem or human society organizes its
overwhelming amount of resources.

B. Low-power Optimization with Agents

In the hierarchical agent architecture, various monitoring
services can be incorporated at different implementation level
considering the specific trade-off on the actual platform. Here
we explain the design consideration with dynamic power
optimization as an example of various feasible services.

One of the major dynamic power saving techniques is
DVFS, which is traditionally provided on a chip-wide domain

Switch

NI

PE

Cell

Agent
DVS

Voltage and

frequency

regulator

Vdd, Clk

Control line

FIFO

FIFO

(a) Cell-level DVFS (showing
one cell)

Switch

NI

PE

Cell

Agent DVS
Voltage and

frequency

regulator

Control line

Switch

NI

PE

Switch

NI

PE

Switch

NI

Cluster Agent

FIFO

FIFO FIFO

FIFO

Cell

Agent

Cell

Agent

Vdd,

Clk

A Cluster

(b) Cluster-level DVFS (showing one cluster)

Figure 3. Power Optimization Services by Different Agent Levels

[13]. But chip-level single power domain is not able to utilize
the local traffic variation in exploiting the supply scaling
potential, thus per-core based DVFS is proposed [14]. In the
cell-divided NoC platform, a cell can be conveniently set with
a supply regulator with the cell agent in charge of the voltage
and frequency adjustment (Fig. 3(a)). The overhead for per-cell
based DVFS is significant. [15] reports 0.14mm2 area overhead
and 83.2% peak efficiency of a DC-DC converter in 90nm
technology. Each time the voltage is converted, extra energy
will be consumed for the power regulation.

To alleviate the per-core-based DVFS overhead, the concept
of voltage islands [16, 17] has been proposed. Up-to-date,
voltage islands are statically determined at design time. To
incorporate multiple voltage islands on the NoC platform, each
cluster agent determines the voltage and frequency for its own
cluster (Fig. 3(b)). The area and energy overhead is reduced
proportional to the number of cells in a cluster. Per-cluster-
based power optimization, however, does not support the
reconfiguration of cells into different clusters at the run-time,
though assigning spares into clusters initially still provides cell
replacement possibilities against component failures.

The granularity of monitoring services is a design choice
dependent on the size of the actual platform, the workload and
constraints of the application. In terms of power optimization,
per-cluster-based monitoring with lower implementation over-
head seems to be more feasible in the long term with smaller-
sized processing cores. In general, any monitoring service can

be configured at the design time or execution time (with the
support of reconfigurable platform) to be handled by different
level of agents, correspondingly in various granularities.

IV. DESIGN TRADE-OFFS FOR AGENT COMMUNICATION

A. Monitoring Communication Interconnect Alternatives

Agents exchange monitoring information with their higher
or lower counterparts as illustrated in Fig. 1. The monitoring
communication needs to be reconfigurable so new cells can
be incorporated to certain clusters at the run-time. Some
conventional interconnection does not support reconfiguration
(for instance, the star-like network as in Fig. 4). Instead,
we consider three interconnect alternatives which all support
run-time reconfiguration but have different area, energy and
latency overheads. Throughput is not a prioritized design
constraint, since the monitoring communication is low in data
volume ([18] reports 8% and 5% debugging monitoring traffic
overhead for two streaming applications).

Cell Cell

Cluster

Agent

Cell Cell

Spare

Spare

Cell Cell

Cluster

Agent

Cell Cell

Data link Monitoring link

Figure 4. Non-reconfigurable Star Networks for Agent Monitoring Intercon-
nect

The first alternative is to realize monitoring communication
as TDM (Time-Division-Multiplexing)-based virtual channel
upon existing links. This option incurs design complexity in
virtual channel arbitration and allocation, increases the switch
latency of both monitoring interconnect and data communica-
tion. The virtual channel arbitration and allocation also incur
energy overhead. Wiring overhead, however, is kept to the
minimum though the switch area is moderately increased.

Platform

Agent

Cell Cell Cell Cell Cell

Cell
Cluster

agent
Cell

Cell Cell
Cluster

agent

Cell Cell Cell Cell Cell

Cell Cell Cell Cell

Cell

Cluster

agent
Cell

Cluster

agent

Data links

Monitoring links for

cluster - cell

communication

Monitoring links for

platform - cluster

communication

Separate Dedicated Monitoring Networks

Cell Cell Cell Cell Cell

Cell
Cluster

agent
Cell

Cell Cell
Cluster

agent

Cell Cell Cell Cell Cell

Cell Cell Cell Cell

Cell

Cluster

agent
Cell

Cluster

agent

Platform

Agent

Data links Monitoring links

Unified Dedicated Monitoring Network

Figure 5. Alternative Dedicated Monitoring Interconnect Architectures

The second alternative is to adopt a “unified dedicated mon-
itoring network” for monitoring communication (Fig. 5 on the

left side). It is called “unified” as monitoring communication
between both cluster-cell agents and platform-cluster agents is
transmitted on the same dedicated network. This option utilizes
more wiring resources but simplifies the switch arbitration
between data and monitoring communication, thus reducing
the communication energy and latency.

The third alternative is to adopt “separate dedicated moni-
toring networks” for monitoring communication (Fig. 5 on the
right side). Compared to the unified monitoring network, this
option adds another network connecting the single platform
agent to a small number of cluster agents. As a result, the
communication between platform and the cluster agents is
simplified with very limited wiring overhead.

B. Quantitative Analysis of Monitoring Interconnects

To quantitatively compare the implementation overhead
of three monitoring interconnect architecture, we model a
network similar to the TeraFLOPS processor in the same
65nm technology. The network has 8*8 processing elements
mapped on a regular tile-based mesh topology. We assume
input-buffered pipelined switches with the structure suggested
by [19] with matrix crossbar [20]. For TDM channels, each
input buffer is 4-flit long while the unified separate network
has 2-flit-long input buffer considering the higher traffic load
of data communication. The other dedicated network for
communication between cluster agents and the platform agent
assumes no buffer since the traffic on this network is exclusive
and infrequent. The arbitration assumes wormhole routing.
NoC links are modeled as segmented wires with drivers and
evenly inserted repeaters1. Data links are 32 bits wide and
2 mm long 2, and dedicated monitoring link is 8-bit wide
and equally long. The locations of the platform agent, cluster
agents and cells (with cell agents) are illustrated in Fig. 6.
The whole NoC system is assumed to be mesochronous with
network frequency as 1GHz and the supply voltage as 1V.

Cell Cell

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Platform

Agent
Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cluster

Agent
Cell

Cell Cell

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

(5,5)

Cluster

Agent

Cluster

Agent

Cluster

Agent

(3,3)

(3,7) (7,7)

(7,3)

Figure 6. Locations of Platform, Cluster and Cell Agents in the Experimental
Platform (with initial cluster boundary labeled)

We estimate the area and energy overhead of switches by
simulating with Orion [21], a widely-used on-chip switch

1wire width: 210nm; spacing: 210nm; repeater interval: 0.25mm; repeater
size: 10x minimal inverter size; driver size: 12x.

2TeraFLOPS uses 2mm * 1.5 mm tiles, while we simplify the tiles to be
2 mm * 2 mm squares

power simulator. The switch latency is estimated based on
[19]. The wires are modeled and simulated by Cadence. The
Orion simulator does not produce result for 65nm technology
directly, thus we apply scaling factors (based on [22]) to the
result of 70nm technology simulation using Orion. The scaling
factors for energy, area, and latency are 0.86, 0.86 and 0.93
respectively. The energy of wires are simulated by Cadence.
The latency in the switch buffer assumes an average 50%
occupancy ratio.

1) Latency: The latency is calculated in cycles considering
the longest distances between the platform agent and a cluster
agent and between a cluster agent to one of its cell agent. From
Fig. 6, we see that both distances are at maximum 4 hop counts
with minimal routing. The wire latency is simulated to be
198ps, and each pipeline stage latency in switches is estimated
to be lower than 300ps ([19], assuming an FO4 inverter delay
to be 15ps in 65nm technology). With 1GHz frequency, each
link and one router pipeline stage (virtual channel allocation,
routing and decoding, crossbar traversal) take 1 cycle delay.
Table I summarizes the latency comparison for monitoring
communication in each interconnect architecture.

Interconnect Architecture Delay
(cluster <->
cell agents)

Delay (platform
<-> cluster

agents)
TDM-based 24 cycles 24 cycles

Unified Dedicated Network 16 cycles 16 cycles
Separate Dedicated Networks 16 cycles 8 cycles

Table I
LATENCY COMPARISON OF THREE MONITORING INTERCONNECT

ARCHITECTURES (NETWORK WORKING AT 1GHZ)

2) Energy Consumption: The energy is calculated by the
amount of energy consumed by a 8-bit flit (as we assume
dedicated monitoring networks are 8-bit wide) traversing on
the longest paths between the platform agent and a cluster
agent, and between a cluster agent to one of its cell agent (4
hop counts as in Fig. 6 with no misrouting). Table II summa-
rizes the energy consumption for monitoring communication
in each interconnect architecture.

Interconnect Architecture Energy
(cluster <->
cell agents)

Energy
(platform <->
cluster agents)

TDM-based 12.92 pJ 12.92 pJ
Unified Dedicated Network 5.40 pJ 5.40 pJ

Separate Dedicated Networks 5.40 pJ 2.31 pJ

Table II
ONE-FLIT MONITORING COMMUNICATION ENERGY OF THREE

MONITORING INTERCONNECT ARCHITECTURES (NETWORK WORKING AT
1GHZ)

3) Area : We analyzed the total wiring and switch area for
each interconnect architecture as a percentage of a TeraFLOPS
chip (275mm2) (Table III).

Interconnect Architecture Area (mm2) Percentage (of
a chip area)

TDM-based 7.44 2.71%
Unified Dedicated Network 8.95 3.26%

Separate Dedicated Networks 9.11 3.32%

Table III
AREA OVERHEAD OF THREE MONITORING INTERCONNECT

ARCHITECTURES

C. Optimal Design Trade-off for Future NoCs

The estimated figures show that separate dedicated moni-
toring networks are the most energy-efficient and low-latency
interconnection for monitoring communication. Compared to
TDM-based interconnection, it reduces the latency by 66.7%
and energy consumption 82.1% for the communication be-
tween the platform and cluster agents, while achieving the
same latency and energy efficiency as unified dedicated net-
work for the communication between the cluster and cell
agents. However there is area penalty involved: the area
overhead is increased from 2.71% to 3.32%. Nonetheless the
wiring area overhead has become less of a design constraint
as multi-layer fabrication process provides quite abundant
wiring potential for on-chip systems ([8]; TILE64 processors
incorporate 5 physically separate networks, each of them being
64-bit wide). With transistor feature size and wire dimension
continue to decrease in the foreseeable future, the separate
monitoring networks will provide the most optimal trade-
off exploiting the on-chip wiring resources while minimizing
the more critical power consumption and global interconnect
latency.

V. CONCLUSIONS

Hierarchical agent monitoring architecture provides great
scalability and design flexibility for future large-scale NoC
systems. With an extra monitoring layer comprised of four
levels of agents, the system is potentially able to achieve
maximized efficiency with online monitoring services. This
paper elaborately explains the hierarchical monitoring ap-
proaches enabled by the interactions of all levels of agents,
and examines the design alternatives for low-power opti-
mization of different granularities as an example of flexible
functional partitions among agent levels. Quantitative analy-
sis for agent interconnection alternatives suggests reasonable
trade-offs between area, energy and latency overhead, and
motivates separate dedicated monitoring networks for inter-
agent communication. This work demonstrates the potential
and feasibility of multi-level online monitoring layer upon the
overwhelming amount of on-chip resources, which provides a
great diversity of design options in a scalable manner.

At present, specific monitoring services on regular NoC
platform with the proposed architecture is under intensive
study and analysis.

REFERENCES

[1] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erra-

guntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar.
An 80-tile sub-100-w teraflops processor in 65-nm cmos.
IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

[2] Shane Bell, Bruce Edwards, John Amann, Rich Conlin,
Kevin Joyce, Vince Leung, John MacKay, Mike Reif,
Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang
Miao, Carl Ramey, David Wentzlaff, Walker Ander-
son, Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan
Montenegro, Jay Stickney, and John Zook. Tile64tm
processor: A 64-core soc with mesh interconnect. In
Proc. Digest of Technical Papers. IEEE International
Solid-State Circuits Conference ISSCC 2008, pages 88–
598, 2008.

[3] Shekhar Borkar. Thousand core chips: a technology
perspective. In DAC ’07: Proceedings of the 44th annual
conference on Design automation, pages 746–749, New
York, NY, USA, 2007. ACM.

[4] Jan M. Rabaey. Scaling the power wall: Revisiting the
low-power design rules. Keynote speech at SoC 07
Symposium, Tampere, November 2007.

[5] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch,
B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and
N. J. Rohrer. High-performance cmos variability in the
65-nm regime and beyond. IBM Journal of Research and
Development, 50(4/5):433–449, 2006.

[6] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and
J. Meerbergen. An event-based network-on-chip moni-
toring service. In Proc. of the 9th IEEE International
High-Level Design Validation and Test Workshop, pages
149–154, 2004.

[7] C. Ciordas, K. Goossens, A. Radulescu, and T. Basten.
Noc monitoring: impact on the design flow. In Proc.
IEEE International Symposium on Circuits and Systems
ISCAS 2006, pages 1981–1984, 2006.

[8] D. Wentzlaff, P. Griffin, H. Hoffmann, Liewei Bao,
B. Edwards, C. Ramey, M. Mattina, Chyi-Chang Miao,
J.F. Brown, and A. Agarwal. On-chip interconnection ar-
chitecture of the tile processor. IEEE MICRO, 27(5):15–
31, 2007.

[9] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adap-
tive self-healing architecture for unpredictable silicon.
IEEE Design & Test of Computers, 23(6):484–490, 2006.

[10] Jingcao Hu and R. Marculescu. Energy and performance-
aware mapping for regular noc architectures. IEEE
Transactions on COMPUTER-AIDED DESIGN of Inte-
grated Circuits and Systems, 24(4):551–562, 2005.

[11] Teijo Lehtonen, Pasi Liljeberg, and Juha Plosila. Online
reconfigurable self-timed links for fault tolerant noc.
VLSI Design, 2007:13, 2007.

[12] S.M. Martin, K. Flautner, T. Mudge, and D. Blaauw.
Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under dynamic
workloads. In Proc. IEEE/ACM International Conference
on Computer Aided Design ICCAD 2002, pages 721–
725, 2002.

[13] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher,

Pradip Bose, and Margaret Martonosi. An analysis of
efficient multi-core global power management policies:
Maximizing performance for a given power budget. In
Proc. of 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO-39), pages 347–358,
2006.

[14] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks.
System level analysis of fast, per-core dvfs using on-
chip switching regulators. In International symposium
on high-performance computer architecture, Feb. 2008.

[15] P. Hazucha, G. Schrom, Jaehong Hahn, B.A. Bloechel,
P. Hack, G.E. Dermer, S. Narendra, D. Gardner,
T. Karnik, V. De, and S. Borkar. A 233-mhz 80%-
87% efficient four-phase dc-dc converter utilizing air-
core inductors on package. IEEE Journal of Solid-State
Circuits, 40(4):838–845, 2005.

[16] Lap-Fai Leung and Chi-Ying Tsui. Energy-aware syn-
thesis of networks-on-chip implemented with voltage
islands. In Proc. 44th ACM/IEEE Design Automation
Conference DAC ’07, pages 128–131, 2007.

[17] D.E. Lackey, P.S. Zuchowski, T.R. Bednar, D.W. Stout,
S.W. Gould, and J.M. Cohn. Managing power and
performance for system-on-chip designs using voltage
islands. In Proc. IEEE/ACM International Conference
on Computer Aided Design ICCAD 2002, pages 195–
202, 2002.

[18] C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and
A. Boon. Transaction monitoring in networks on chip:
The on-chip run-time perspective. In Proc. International
Symposium on Industrial Embedded Systems IES ’06,
pages 1–10, 2006.

[19] L.-S. Peh and W.J. Dally. A delay model and speculative
architecture for pipelined routers. In Proc. of The
Seventh International Symposium on High-Performance
Computer Architecture, pages 255–266, 19–24 Jan. 2001.

[20] Hangsheng Wang. a detailed architectural-level power
model for router buffers, crossbars and arbiters. Technical
report, Department of Electrical Engineering, Princeton
University, 2004.

[21] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and
S. Malik. Orion: a power-performance simulator for in-
terconnection networks. In Proc. 35th Annual IEEE/ACM
International Symposium on (MICRO-35) Microarchitec-
ture, pages 294–305, 2002.

[22] W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon,
A. Bryant, O. H. Dokumaci, A. Kumar, X. Wang, J. B.
Johnson, and M. V. Fischetti. Silicon cmos devices
beyond scaling. IBM Journal of Research and Devel-
opment, 50(4/5):339–361, 2006.

