
DMesh: a Diagonally-Linked Mesh Network-on-Chip
Architecture

Wen-Hsiang Hu, Seung Eun Lee, and Nader Bagherzadeh
Department of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, CA 92697 USA

{wenhsiah, seunglee, nader} @uci.edu

Abstract— In this paper, we propose a new mesh-typed NoC
architecture which aims at enhancing network performance
while keeping implementation cost feasible. The result is a
diagonally-linked mesh (DMesh) NoC that uses wormhole packet
switching technique. Together with the proposed adaptive quasi-
minimal routing algorithm, DMesh improves average latency
and saturation traffic load. In addition, logic synthesis results
show that adding diagonal links is a more area-efficient way for
increasing network performance than using large buffers.

I. INTRODUCTION
As semiconductor technology continues its phenomenal

growth and follows the Moore’s Law, the amount of
computation power and storage that can be integrated on a chip
increases. There have been previous articles reporting a single
chip that incorporated 64 cores [1] and another one with 80
cores [2]. While the computation logic grows, the
performance of on-chip interconnections does not scale as well.
Starting with 0.25μm CMOS technology, wire delay
dominates gate delay and the gap between wire delay and gate
delay becomes wider as process technology improves. In
addition, human design productivity can not keep up with the
growth rate of available circuits on a single chip. These issues
call for a well-structured design approach, modularized design
methodology, clear programming model and predictable
behavior of the system [5]. There is a need for a new on-chip
interconnection architecture to solve these design challenges.

Network-on-chip (NoC) interconnection scheme is
proposed as a unified solution for the design problems faced in
advanced process technology [3][4]. With NoC, we can apply
wire segmentation and wire sharing design techniques to
resolve the performance bottleneck due to wire delay. NoC
uses a distributed control mechanism, resulting in a scalable
interconnection network. The use of standardized sockets
enables modular design and intellectual property (IP) reuse and
the system predictability can be obtained by using guaranteed
service provided by NoC. Therefore, there is growing interest
in NoC research [5][6] and NoC is considered as a practical
approach for the next-generation on-chip interconnection.

We have recently developed a multi-processor system
platform called Network-based Processor Array (NePA) [7] in
which the processors are interconnected by using an on-chip

two-dimensional (2D) mesh network. The NePA NoC is a
deadlock-free and livelock-free network that implements the
wormhole packet switching technique and utilizes an adaptive
minimal routing algorithm. To further improve the
performance of NePA NoC, we propose in this paper to add
diagonal links to the 2D mesh network, because of the
emergence of X-architecture routing technique in chip
manufacturing [8][9]. The diagonal links not only reduce the
distance between a source node and a destination node but
alleviate traffic congestion in the network so that the network
performance is enhanced. Our proposed NoC architecture is
referred to as DMesh: Diagonally-linked Mesh. Simulation
results from self-similar traffic show that DMesh improves the
average latency and the saturation traffic load on both 4x4 and
8x8 mesh networks. In addition, logic synthesis results in
TSMC 65nm CMOS process show that adding diagonal links
is a more area-efficient way to improve network performance
than increasing buffer size.

The rest of this paper is organized as follows: Section 2
presents the background knowledge of NoC architecture and
related researches. The proposed DMesh NoC architecture is
discussed in Section 3. Section 4 presents experimental results.
Finally, brief statements conclude this paper in the last section.

II. BACKGROUND
In this section, we discuss the background of NoC

architecture and provide a review of some related works in this
field, as well as an overview of the NePA platform.

A. NOC Architecture
The function of an on-chip network is to deliver messages

from source node to destination node and there exist many
design alternatives to accomplish this job. Depending on the
application requirements, how to choose suitable network
architecture remains an open problem in this field of research.
Here we discuss the network properties that need to be
considered when devising an NoC architecture for specific
application needs.

1) Switching policy
There are two major switching techniques: circuit

switching and packet switching. Circuit switching establishes
a link between source node and destination node either

virtually or physically before a message is being transferred.
The link is held until all the data is transmitted. The major
advantages of circuit switching are that there is no contention
delay during message transmission and its behavior is more
predictable, so circuit switching is usually employed when
Quality of Service (QoS) is considered. Examples of using
this technique are [15] and [16].

On the other hand, packet switching transfers messages on
a per-hop basis. With packet switching, messages are divided
into packets at the source node and then sent into a network.
Packets move along a route determined by the routing
algorithm and traverse through a series of network nodes and
finally arrive at the destination node. Packet switching is
utilized in most of NoCs because of its potential for providing
simultaneous data communication between many source-
destination pairs. Readers are referred to [6] for a list of NoCs
utilizing packet switching techniques. Packet switching can be
further classified into three classes: store and forward (SAF),
virtual cut through (VCT), and wormhole switching. The most
popular one for NoC based architectures is wormhole
switching because it only requires a buffer size of one flit
(flow control unit) so that the area cost of a router can be kept
low. In contrast, SAF and VCT require a buffer size of the
whole packet which prohibits their adoption.

2) Topology
Topology defines how nodes are placed and connected,

affecting the bandwidth and latency of a network. Many
different topologies have been proposed, [6], such as mesh,
torus, binary tree, Octagon, mixed and custom topology, as
shown in Fig. 1. Some researchers have proposed the
application-specific topology that can offer superior
performance while minimizing area and energy consumption
[17][18]. The most common topologies are 2D mesh and torus
due to their grid-type shapes and regular structure which are
the most appropriate for the two dimensional layout on a chip.

Figure 1. NoC topologies.

3) Routing
Routing is the mechanism responsible for determining the

path that a packet traverses from the source node to the
destination node. Routing algorithms such as deterministic
and adaptive ones have been proposed. With deterministic
routing, the path between source-destination pair is fixed,
regardless of the current state of the network. On the other
hand, an adaptive routing algorithm takes the network state
into account when deciding a route, resulting in variation of
the routing path with time. For example, it may choose an

alternative path if a certain link is congested, therefore, an
adaptive routing algorithm has the potential of supporting
more traffic for the same network topology. However, most of
the proposed packet-switched NoCs use deterministic routing
because of its simplicity and the low area overhead in router
design.

B. NePA
We provide an overview of the NePA architecture in this

section. NePA implements the wormhole packet switching
technique and the topology of NePA is based on a 2D mesh as
shown in Fig. 2. Each node in NePA consists of a router and a
local IP which can be a CPU, DSP, memory block, or
application-specific logic. The router connects with its four
neighboring routers via six bidirectional links. A key feature
of the NePA architecture is the use of two separate vertical
links which are employed to construct a deadlock-free network
[19]. The NePA network is actually composed of two disjoint
sub-networks. One sub-network is responsible for delivering
east-bounded packets while the other one is for west-bounded
packets. Therefore, cycles in the resource dependence graph
[14] and prevent deadlocks from happening. This design
technique reduces the design complexity of the router because
there is no need for a deadlock aware routing algorithm. To
increase network performance, NePA utilizes an adaptive XY
routing algorithm. When an output port is congested, or the
output buffer is full, the router selects an alternative output
port for packets. Therefore, the link utilization is balanced and
network performance improves.

Figure 2. A 4x4 NePA network and its node composition.

III. DMesh ARCHITECTURE

A. Topology
The DMesh network is constructed by integrating diagonal

links to NePA, as presented in Fig. 3. Each node has 10 64-bit
bidirectional links connecting with its neighbors so the DMesh
router has 10 output ports (N1/N2/S1/S2/E/W/NE/NW/SE/SW-
out) and 10 input ports (N1/N2/S1/S2/E/W/NE/NW/SE/SW-in).
Additionally, there are three ports for connection with local
PEs: IntR, IntL and Int. Fig. 4 depicts the input and output
ports of NePA router and DMesh router. The DMesh network
is composed of two sub-networks: E-subnet and W-subnet,
represented in dashed arrows and solid arrows in Fig. 3,
respectively. The E-subnet is responsible for transferring

Mesh Torus Binary tree

Octagon Mixed Custom

Figure 3. Topology and links of DMesh.

(a) NePA router (b) DMesh router

Figure 4. Ports of NePA router and DMesh router.

packets eastward while the W-subnet is for transmitting
westward traffic. When source PE starts packet transmission, it
injects packets into the network via IntR or IntL port,
depending on the direction of destination PE. The IntR port is
in charge of injecting packets into the E-subnet and the IntL
port is for the W-subnet. Then the packets traverse in one of
the sub-networks to their destinations. When packets arrive at
the destination node, they are ejected from the Int port.

B. Packet format
With wormhole packet switching, DMesh packets are

composed of 64-bit flits. We utilized the same packet format
defined for NePA in [19]. There are four types of packets
defined. The single data transfer packet consists of one flit and
is used for transferring 32-bit data. The single command
packet is for building control specific protocols between
processor elements (PEs) or between a PE and a router.

DMesh also supports multiple data packets, which are used
for transmitting more than one 32-bit words at a time, because
multiple data transmission has better performance in terms of
communication overhead than the single data transmission.
Two different block transfers are defined. One is block
program transfer packet which is used for programming each
PE. The other is block data transfer packet used for
transferring multiple data words between PEs. The block
program/data transfer packet consists of a header flit and a
series of body flits which contains the actual program/data to
be transmitted. The number of body flits is encoded in the
header flit.

The address of destination PE is represented in the X-dir
field and Y-dir field in a relative distance format. For instance,
if the destination node is on the east side of the source node the

X-dir field has a positive value. The X-dir field has a negative
value if the destination node is on the west side of the source
node. This technique of relative address representation helps
reduce router design effort because a same router can be
applied to all network nodes without any modification. We
also incorporated the seq_num field in the packet for
reordering out-of-order delivery. The single/block data transfer
packet has the sourcePE_address field and the application-
dependent data_ID field in order for the destination PE to
identify received data.

C. Routing
We devised a distributed adaptive routing algorithm for

DMesh. With distributed routing, the selection of the next hop
is decided at the current node and the path selection is based
on a quasi-minimal routing technique. Take Fig. 5 for example,
if there is a packet being transferred from node S to node D,
there are three alternative paths: a, b, and c. Clearly, path a is
the shortest path. However, from our preliminary simulation,
if a minimal routing algorithm is adopted and we always
choose the shortest path there will be severe congestion on
diagonal links and low utilization on vertical and horizontal
links. Thus, the network performance is impacted. Our quasi-
minimal routing relaxes the output port selection. In this
example, it allows packets to take path b or path c depending
on the network state, if path a is congested. Although the
packet may traverse a longer path, this approach helps balance
link load and relieve congestion. In order to solve contention
at an output port, we employed a fixed-priority scheme for
arbitration. In general, the diagonal input ports are given the
highest priority, then the horizontal and vertical input ports,
and IntR and IntL have the lowest priority.

S

D

a

(a) Minimal routing (b) Our approach

Figure 5. Example of route selection

IV. PERFORMANCE AND COST EVALUATION
Here we describe the methodology used to analyze the

performance and area cost of DMesh architecture and present
the results.

A. Performance evaluation
To evaluate DMesh performance and compare it with

NePA, we constructed a SystemC based cycle accurate
simulator called eNoC. In eNoC, we can change various
network configurations, such as network size, topology, buffer
size, routing algorithm, priority scheme for router arbitration,
and traffic pattern. There are four different traffic patterns
used for measuring the performance: uniform random, bit
complement, bit reverse and matrix transpose traffic patterns.
These patterns define the spatial distribution of packets.

As for the temporal distribution of packets, we adopted the
self-similar traffic generation techniques. Self-similar traffic
has been found in the traffic between on-chip modules in
MPEG-2 video applications [10] and conventional computer
networks [11]. Researchers [12] have shown that self-similar
traffic can be generated by aggregating a large number of
packet sources which exhibit a long-range dependence
property. We used the modeling method proposed in [13] to
produce the self-similar traffic. During simulation, each
source node is either in the ON or OFF state. A source node
generates packets when it is in the ON state and it does not
generate any packets when in the OFF state. The length of
time a node spends in the ON or OFF states is determined by
the Pareto distribution (F(x) = 1 – x-α, 1<α<2). The equations
for calculating ON and OFF times are

ONUTON
α1−= (1)

OFFUTOFF
α1−= (2)

U is a uniformly distributed value in the range of (0, 1], αON =
1.9 and αOFF = 1.25.

We used a standard interconnection network measurement
setup described in [14]. After a packet is generated, it is stored
in an infinite queue at the source node and waits for being
injected into the network. This mechanism referred to as the
open-loop measurement configuration isolates the packet
generation from the network behavior, i.e. the packet
generation is independent of the network condition. Each
simulation executes 10,000 clock cycles for warm-up and then
continues for 100,000 cycles during which performance
measurements are conducted.

Two performance metrics are of importance to us: latency
and throughput. In order to compute latency information, each
flit in eNoC is declared as a SystemC object that carries four
latency related private variables: generation time (Tg), injection
time (Ti), arrival time (Ta) and inter-node distance (D). Inter-
node distance is represented in terms of the number of hops
between source-destination pairs. With this information, the
latency, queuing delay, and blocking time of each flit can be
calculated by the following equations:

Latency = Ta – Tg (3)

Queuing delay = Ti – Tg (4)

Blocking time = Ta – Ti – (D * clock cycle time) (5)

The average inter-node distance is shown in Table I. We
can see that our routing algorithm makes efficient use of
diagonal links so that the inter-node distance is reduced in all
traffic patterns. Matrix transpose traffic has the largest
improvement and makes the most of the diagonal links
because the source-destination pairs are all symmetric to the
diagonal in a matrix.

The comparison of average latency in 4x4 and 8x8
networks under four different traffic patterns is shown in Fig. 8.
In both 4x4 and 8x8 network size, DMesh outperforms NePA.
In particular, the 4x4 network under bit reverse and matrix
transpose traffic, the latency in DMesh is a constant because

the network is capable of resolving all routing resource
contentions. That is, each source-destination pair can obtain
an alternative path that is not occupied by other packets. In
Fig. 6, we compare the queuing delay, traverse latency, and
blocking time for 4x4 and 8x8 networks under random traffic.
For different traffic loads, all of these delays are decreased in
DMesh. The saturation load (the point where throughput no
longer grows linearly with traffic load) in various
configurations are summarized in Table III. It can be observed
that DMesh is able to sustain higher load than the NePA. For
random traffic, the improvement in the 8x8 network is more
than the 4x4 network which implies that DMesh has a greater
impact on systems with more nodes. From Table III, it can be
seen that the increase in FIFO sizes does not help much with
the saturation load.

B. Area cost and power consumption evaluation
In order to estimate hardware cost, we implemented the

NePA router, the DMesh router and the FIFO buffer in Verilog
and performed logic synthesis by using the Synopsys Design
Compiler to get gate count information. Various buffer sizes
were also evaluated. For the NePA router, we followed the
architecture described in [7]. The block diagram of DMesh
router is presented in Fig. 7. The DMesh router has three sub-
routers for processing traffic in the E-subnet, W-subnet and Int
output port. There is a FIFO associated with each input port.
Header processing unit (HPU) extracts destination information
from the header flit and routing logic (RL) is used to decide
routing path, perform arbitration and control the crossbar
switch.

We used TSMC 65nm CMOS generic process technology
in logic synthesis. The target clock rate is set to be 800 MHz
and is met in all configurations. The results are listed in Table
II. From the table, we can observe that the gate count and
power consumption of the DMesh router with a FIFO depth of
4/8 is roughly equal to or less than those of the NePA router
with a FIFO depth of 8/16. Performance comparisons of these
four configurations are shown in Fig. 9. It is clear that DMesh
has a shorter latency than NePA with similar hardware cost.
For example, for a 8x8 mesh in random traffic, DMesh with a
FIFO depth of 4 has a shorter latency than NePA with a FIFO
depth of 8 and 16. All other configurations have similar results.
Fig. 9 also shows that the improvements from diagonal links
are more than those from larger buffers. Therefore, DMesh is a
more area-efficient architecture.

TABLE I. COMPARISON OF AVERAGE INTER-NODE DISTANCE
4x4 network

Network Random Bit
complement

Bit reverse Matrix
transpose

NePA 2.38 4.33 3.32 3.38
DMesh 1.83 2.55 1.99 1.79

Reduction 23.1% 41.1% 40.0% 47.0%

8x8 network
Network Random Bit

complement
Bit reverse Matrix

transpose
NePA 4.89 9.75 6.19 7.33
DMesh 3.66 5.80 4.04 3.86

Reduction 25.1% 40.5% 34.7 47.3

0

10

20

30

0.1 NePA
0.1 DM

esh
0.2 NePA
0.2 DM

esh
0.3 NePA
0.3 DM

esh
0.4 NePA
0.4 DM

esh
0.5 NePA
0.5 DM

esh

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Transfer Latency Blocking Time Queuing Delay
(a) 4x4 mesh network

0

10

20

30

0.1 NePA
0.1 DM

esh
0.2 NePA
0.2 DM

esh
0.3 NePA
0.3 DM

esh
0.35 NePA
0.35 D

M
esh

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Transfer Latency Blocking Time Queuing Delay
(b) 8x8 mesh network

Figure 6. Comparison of various delays in random traffic

Figure 7. Block diagram of DMesh router.

TABLE II. GATE COUNT (EQUIVALENT 2-INPUT NAND GATE) OF NEPA
AND DMESH ROUTER NODE (FIFOS INCLUDED)

NePA DMesh FIFO
depth
(flits)

Gate
Count

Dynamic
Power (mW)

Gate Count Dynamic
Power
(mW)

2 18368 6.99 32750 11.53
4 28654 12.29 46598 20.40
8 47038 22.32 75382 36.88

16 85362 42.03 134479 69.45
32 163330 81.27 250559 134.36
64 316173 159.33 490820 261.95

V. CONCLUSION
We developed a novel DMesh NoC architecture and

demonstrated its performance enhancement over the previous
work. Hardware cost evaluation also shows that our approach
is more area-efficient than previously reported results. With
more links in the network, we anticipate that DMesh has the
potential of supporting better QoS and fault tolerance
capability.

REFERENCES
[1] S. Bell et al., "TILE64 Processor: A 64-Core SoC with Mesh

Interconnect," Solid-State Circuits Conference, 2008. Digest of
Technical Papers. IEEE International, pp. 88-598, 2008.

[2] S. Vangal et al., "An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS," Solid-State Circuits Conference, 2007. Digest of Technical
Papers. IEEE International, pp. 98-589, 2007.

[3] W. J. Dally and B. Towles, "Route packets, not wires: on-chip
interconnection networks," Design Automation Conference, 2001.
Proceedings, pp. 684-689, 2001.

[4] L. Benini and G. De Micheli, "Networks on chip: a new paradigm for
systems on chip design," Design, Automation and Test in Europe
Conference and Exhibition, 2002. Proceedings, pp. 418-419, 2002.

[5] T. Bjerregaard and S. Mahadevan, "A survey of research and practices
of Network-on-chip," ACM Computing Surveys, vol. 38, pp. 1, 2006.

[6] E. Salminen et al., "Survey of Network-on-Chip proposals," White
Paper, OCP-IP, March 2008.

[7] J. H. Bahn, S. E. Lee, Y. S. Yang, J. Yang and N. Bagherzadeh, "On
Design and Application Mapping of a Network-on-Chip(NoC)
Architecture," Parallel Processing Letters, vol. 18, pp. 239-255, 2008.

[8] M. Igarashi, T. Mitsuhashi, A. Le, S. Kazi, Y. T. Lin, A. Fujimura and S.
Teig, "A Diagonal-Interconnect Architecture and Its Application to
RISC Core Design," IEIC Technical Report (Institute of Electronics,
Information and Communication Engineers), vol. 102, pp. 19-23, 2002.

[9] S. L. Teig, "The X architecture: Not your father's diagonal wiring,"
Proceedings of the 2002 International Workshop on System-level
Interconnect Prediction, pp. 33-37. 2002.

[10] G. Varatkar and R. Marculescu, "Traffic analysis for on-chip networks
design of multimedia applications," in DAC '02: Proceedings of the 39th
Conference on Design Automation, 2002, pp. 795-800.

[11] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, "On the
self-similar nature of Ethernet traffic (extended version)," Networking,
IEEE/ACM Transactions on, vol. 2, pp. 1-15, 1994.

[12] M. S. Taqqu, W. Willinger and R. Sherman, "Proof of a fundamental
result in self-similar traffic modeling," SIGCOMM Comput. Commun.
Rev., vol. 27, pp. 5-23, 1997.

[13] D. R. Avresky, "Performance evaluation of the ServerNet(R) SAN
under self-similar traffic," Parallel and Distributed Processing, 1999.
13th International and 10th Symposium on Parallel and Distributed
Processing, 1999. 1999 IPPS/SPDP. Proceedings, pp. 143-147, 1999.

[14] W. J. Dally, Principles and Practices of Interconnection Networks.
Morgan Kaufmann, 2004.

[15] K. Chang, J. Shen and T. Chen, "Evaluation and design trade-offs
between circuit-switched and packet-switched NOCs for application-
specific SOCs," in DAC '06: Proceedings of the 43rd Annual
Conference on Design Automation, 2006, pp. 143-148.

[16] P. Marchal, D. Verkest, A. Shickova, F. Catthoor, F. Robert and A.
Leroy, "Spatial division multiplexing: a novel approach for guaranteed

throughput on NoCs," Hardware/Software Codesign and System
Synthesis, 2005. CODES+ISSS '05. Third IEEE/ACM/IFIP
International Conference on, pp. 81-86, 2005.

[17] J. Hu, Y. Deng and R. Marculescu, "System-level point-to-point
communication synthesis using floorplanning information," in ASP-
DAC '02: Proceedings of the 2002 Conference on Asia South Pacific
Design automation/VLSI Design, 2002, pp. 573.

[18] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L.
Benini and G. D. Micheli, "NoC Synthesis Flow for Customized
Domain Specific Multiprocessor Systems-on-Chip," vol. 16, pp. 113-
129, 2005.

[19] J. H. Bahn, S. E. Lee and N. Bagherzadeh, "On Design and Analysis of
a Feasible Network-on-Chip (NoC) Architecture," Information
Technology, 2007.ITNG'07.Fourth International Conference on, pp.
1033-1038, 2007.

TABLE III. COMPARISON OF SATURATION LOAD OF NEPA AND DMESH

Network FIFO depth
= 2

FIFO depth
=4

FIFO depth
=8

FIFO depth
=16

FIFO depth
=32

FIFO depth
=64

NePA 0.519 0.595 0.626 0.659 0.686 0.695
DMesh 0.597 0.688 0.752 0.803 0.828 0.855 4x4 Random
Improvement 15.0% 15.6% 20.1% 21.8% 20.6% 23.0%
NePA 0.360 0.361 0.359 0.362 0.365 0.371
DMesh 0.611 0.504 0.545 0.530 0.556 0.537 4x4 Bit-

complement
Improvement 69.7% 39.6% 51.8% 46.4% 52.3% 45.1%
NePA 0.388 0.384 0.385 0.386 0.387 0.387
DMesh 1.000 1.000 1.000 1.000 1.000 1.000 4x4 Bit-reverse
Improvement 157.7% 160.4% 159.7% 159.0% 158.3% 158.3%
NePA 0.422 0.395 0.392 0.392 0.390 0.387
DMesh 0.709 1.000 1.000 1.000 1.000 1.000 4x4 Matrix

transpose
Improvement 68.0% 153.1% 155.1% 155.1% 156.4% 158.3%
NePA 0.298 0.353 0.394 0.423 0.436 0.441
DMesh 0.459 0.509 0.550 0.596 0.627 0.650 8x8 Random
Improvement 54.0% 44.1% 39.5% 40.8% 43.8% 47.3%
NePA 0.090 0.090 0.090 0.090 0.090 0.144
DMesh 0.232 0.221 0.230 0.239 0.244 0.246 8x8 Bit-

complement
Improvement 157.7% 145.5% 155.5% 165.5% 171.1% 70.8%
NePA 0.178 0.174 0.175 0.187 0.199 0.204
DMesh 0.312 0.309 0.304 0.313 0.307 0.311 8x8 Bit-reverse
Improvement 75.2% 77.5% 73.7% 67.3% 54.2% 52.4%
NePA 0.167 0.174 0.174 0.181 0.184 0.184
DMesh 0.317 0.322 0.327 0.373 0.379 0.445 8x8 Matrix

transpose
Improvement 89.8% 85.0% 87.9% 106.0% 105.9% 141.8%

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s) NePA

DMesh

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

(a) 4x4 random traffic (b) 4x4 bit complement traffic (c) 4x4 bit reverse traffic (d) 4x4 matrix transpose traffic

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

(a) 8x8 random traffic (b) 8x8 bit complement traffic (c) 8x8 bit reverse traffic (d) 8x8 matrix transpose traffic

Figure 8. Comparisons of average latency in 4x4 and 8x8 mesh networks (FIFO depth = 4).

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)
Av

er
ag

e
La

te
nc

y
(c

yc
le

s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(a) 4x4 random traffic (b) 4x4 bit complement traffic

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(c) 4x4 bit reverse traffic (d) 4x4 matrix transpose traffic

0

20

40

60

80

100

0 0.2 0.4 0.6 0.

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(a) 8x8 random traffic (b) 8x8 bit complement traffic

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

20

40

60

80

100

0 0.2 0.4 0.6 0.

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(c) 8x8 bit reverse traffic (d) 8x8 matrix transpose traffic

Figure 9. Comparisons of average latency in 4x4 and 8x8 mesh networks with similar router cost.

