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Abstract— In this paper, we propose a new mesh-typed NoC 
architecture which aims at enhancing network performance 
while keeping implementation cost feasible. The result is a 
diagonally-linked mesh (DMesh) NoC that uses wormhole packet 
switching technique. Together with the proposed adaptive quasi-
minimal routing algorithm, DMesh improves average latency 
and saturation traffic load. In addition, logic synthesis results 
show that adding diagonal links is a more area-efficient way for 
increasing network performance than using large buffers. 

 

I. INTRODUCTION 
As semiconductor technology continues its phenomenal 

growth and follows the Moore’s Law, the amount of 
computation power and storage that can be integrated on a chip 
increases.  There have been previous articles reporting a single 
chip that incorporated 64 cores [1] and another one with 80 
cores [2].  While the computation logic grows, the 
performance of on-chip interconnections does not scale as well.  
Starting with 0.25μm CMOS technology, wire delay 
dominates gate delay and the gap between wire delay and gate 
delay becomes wider as process technology improves.  In 
addition, human design productivity can not keep up with the 
growth rate of available circuits on a single chip.  These issues 
call for a well-structured design approach, modularized design 
methodology, clear programming model and predictable 
behavior of the system [5].  There is a need for a new on-chip 
interconnection architecture to solve these design challenges. 

Network-on-chip (NoC) interconnection scheme is 
proposed as a unified solution for the design problems faced in 
advanced process technology [3][4].  With NoC, we can apply 
wire segmentation and wire sharing design techniques to 
resolve the performance bottleneck due to wire delay.  NoC 
uses a distributed control mechanism, resulting in a scalable 
interconnection network.  The use of standardized sockets 
enables modular design and intellectual property (IP) reuse and 
the system predictability can be obtained by using guaranteed 
service provided by NoC.  Therefore, there is growing interest 
in NoC research [5][6] and NoC is considered as a practical 
approach for the next-generation on-chip interconnection. 

We have recently developed a multi-processor system 
platform called Network-based Processor Array (NePA) [7] in 
which the processors are interconnected by using an on-chip 

two-dimensional (2D) mesh network.  The NePA NoC is a 
deadlock-free and livelock-free network that implements the 
wormhole packet switching technique and utilizes an adaptive 
minimal routing algorithm.  To further improve the 
performance of NePA NoC, we propose in this paper to add 
diagonal links to the 2D mesh network, because of the 
emergence of X-architecture routing technique in chip 
manufacturing [8][9].  The diagonal links not only reduce the 
distance between a source node and a destination node but 
alleviate traffic congestion in the network so that the network 
performance is enhanced.  Our proposed NoC architecture is 
referred to as DMesh: Diagonally-linked Mesh.  Simulation 
results from self-similar traffic show that DMesh improves the 
average latency and the saturation traffic load on both 4x4 and 
8x8 mesh networks.  In addition, logic synthesis results in 
TSMC 65nm CMOS process show that adding diagonal links 
is a more area-efficient way to improve network performance 
than increasing buffer size. 

The rest of this paper is organized as follows: Section 2 
presents the background knowledge of NoC architecture and 
related researches.  The proposed DMesh NoC architecture is 
discussed in Section 3.  Section 4 presents experimental results.  
Finally, brief statements conclude this paper in the last section. 

 

II. BACKGROUND 
In this section, we discuss the background of NoC 

architecture and provide a review of some related works in this 
field, as well as an overview of the NePA platform. 

A. NOC Architecture 
The function of an on-chip network is to deliver messages 

from source node to destination node and there exist many 
design alternatives to accomplish this job.  Depending on the 
application requirements, how to choose suitable network 
architecture remains an open problem in this field of research.  
Here we discuss the network properties that need to be 
considered when devising an NoC architecture for specific 
application needs. 

1) Switching policy 
There are two major switching techniques: circuit 

switching and packet switching.  Circuit switching establishes 
a link between source node and destination node either 



virtually or physically before a message is being transferred.  
The link is held until all the data is transmitted.  The major 
advantages of circuit switching are that there is no contention 
delay during message transmission and its behavior is more 
predictable, so circuit switching is usually employed when 
Quality of Service (QoS) is considered.  Examples of using 
this technique are [15] and [16]. 

On the other hand, packet switching transfers messages on 
a per-hop basis.  With packet switching, messages are divided 
into packets at the source node and then sent into a network.  
Packets move along a route determined by the routing 
algorithm and traverse through a series of network nodes and 
finally arrive at the destination node.  Packet switching is 
utilized in most of NoCs because of its potential for providing 
simultaneous data communication between many source-
destination pairs.  Readers are referred to [6] for a list of NoCs 
utilizing packet switching techniques.  Packet switching can be 
further classified into three classes: store and forward (SAF), 
virtual cut through (VCT), and wormhole switching.  The most 
popular one for NoC based architectures is wormhole 
switching because it only requires a buffer size of one flit 
(flow control unit) so that the area cost of a router can be kept 
low.  In contrast, SAF and VCT require a buffer size of the 
whole packet which prohibits their adoption.  

2) Topology 
Topology defines how nodes are placed and connected, 

affecting the bandwidth and latency of a network.  Many 
different topologies have been proposed, [6], such as mesh, 
torus, binary tree, Octagon, mixed and custom topology, as 
shown in Fig. 1.  Some researchers have proposed the 
application-specific topology that can offer superior 
performance while minimizing area and energy consumption 
[17][18].  The most common topologies are 2D mesh and torus 
due to their grid-type shapes and regular structure which are 
the most appropriate for the two dimensional layout on a chip. 

Figure 1.  NoC topologies. 

3) Routing 
Routing is the mechanism responsible for determining the 

path that a packet traverses from the source node to the 
destination node.  Routing algorithms such as deterministic 
and adaptive ones have been proposed.  With deterministic 
routing, the path between source-destination pair is fixed, 
regardless of the current state of the network.  On the other 
hand, an adaptive routing algorithm takes the network state 
into account when deciding a route, resulting in variation of 
the routing path with time.  For example, it may choose an 

alternative path if a certain link is congested, therefore, an 
adaptive routing algorithm has the potential of supporting 
more traffic for the same network topology.  However, most of 
the proposed packet-switched NoCs use deterministic routing 
because of its simplicity and the low area overhead in router 
design.  

B. NePA 
We provide an overview of the NePA architecture in this 

section.  NePA implements the wormhole packet switching 
technique and the topology of NePA is based on a 2D mesh as 
shown in Fig. 2.  Each node in NePA consists of a router and a 
local IP which can be a CPU, DSP, memory block, or 
application-specific logic. The router connects with its four 
neighboring routers via six bidirectional links.  A key feature 
of the NePA architecture is the use of two separate vertical 
links which are employed to construct a deadlock-free network 
[19].  The NePA network is actually composed of two disjoint 
sub-networks.  One sub-network is responsible for delivering 
east-bounded packets while the other one is for west-bounded 
packets.  Therefore, cycles in the resource dependence graph 
[14] and prevent deadlocks from happening. This design 
technique reduces the design complexity of the router because 
there is no need for a deadlock aware routing algorithm. To 
increase network performance, NePA utilizes an adaptive XY 
routing algorithm.  When an output port is congested, or the 
output buffer is full, the router selects an alternative output 
port for packets.  Therefore, the link utilization is balanced and 
network performance improves. 

Figure 2.  A 4x4 NePA network and its node composition. 

III. DMesh ARCHITECTURE 

A. Topology 
The DMesh network is constructed by integrating diagonal 

links to NePA, as presented in Fig. 3.  Each node has 10 64-bit 
bidirectional links connecting with its neighbors so the DMesh 
router has 10 output ports (N1/N2/S1/S2/E/W/NE/NW/SE/SW-
out) and 10 input ports (N1/N2/S1/S2/E/W/NE/NW/SE/SW-in).  
Additionally, there are three ports for connection with local 
PEs: IntR, IntL and Int.  Fig. 4 depicts the input and output 
ports of NePA router and DMesh router.  The DMesh network 
is composed of two sub-networks: E-subnet and W-subnet, 
represented in dashed arrows and solid arrows in Fig. 3, 
respectively.  The E-subnet is responsible for transferring  
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Figure 3.  Topology and links of DMesh. 

(a) NePA router (b) DMesh router

Figure 4.  Ports of NePA router and DMesh router. 

packets eastward while the W-subnet is for transmitting 
westward traffic. When source PE starts packet transmission, it 
injects packets into the network via IntR or IntL port, 
depending on the direction of destination PE.  The IntR port is 
in charge of injecting packets into the E-subnet and the IntL 
port is for the W-subnet. Then the packets traverse in one of 
the sub-networks to their destinations. When packets arrive at 
the destination node, they are ejected from the Int port.  

B. Packet format 
With wormhole packet switching, DMesh packets are 

composed of 64-bit flits. We utilized the same packet format 
defined for NePA in [19]. There are four types of packets 
defined.  The single data transfer packet consists of one flit and 
is used for transferring 32-bit data. The single command 
packet is for building control specific protocols between 
processor elements (PEs) or between a PE and a router. 

DMesh also supports multiple data packets, which are used 
for transmitting more than one 32-bit words at a time,  because 
multiple data transmission has better performance in terms of 
communication overhead than the single data transmission.  
Two different block transfers are defined.  One is block 
program transfer packet which is used for programming each 
PE.  The other is block data transfer packet used for 
transferring multiple data words between PEs.  The block 
program/data transfer packet consists of a header flit and a 
series of body flits which contains the actual program/data to 
be transmitted.  The number of body flits is encoded in the 
header flit. 

The address of destination PE is represented in the X-dir 
field and Y-dir field in a relative distance format.  For instance, 
if the destination node is on the east side of the source node the 

X-dir field has a positive value.  The X-dir field has a negative 
value if the destination node is on the west side of the source 
node.  This technique of relative address representation helps 
reduce router design effort because a same router can be 
applied to all network nodes without any modification.  We 
also incorporated the seq_num field in the packet for 
reordering out-of-order delivery. The single/block data transfer 
packet has the sourcePE_address field and the application-
dependent data_ID field in order for the destination PE to 
identify received data. 

C. Routing 
We devised a distributed adaptive routing algorithm for 

DMesh.  With distributed routing, the selection of the next hop 
is decided at the current node and the path selection is based 
on a quasi-minimal routing technique. Take Fig. 5 for example, 
if there is a packet being transferred from node S to node D, 
there are three alternative paths: a, b, and c.  Clearly, path a is 
the shortest path.  However, from our preliminary simulation, 
if a minimal routing algorithm is adopted and we always 
choose the shortest path there will be severe congestion on 
diagonal links and low utilization on vertical and horizontal 
links.  Thus, the network performance is impacted.  Our quasi-
minimal routing relaxes the output port selection.  In this 
example, it allows packets to take path b or path c depending 
on the network state, if path a is congested.  Although the 
packet may traverse a longer path, this approach helps balance 
link load and relieve congestion.  In order to solve contention 
at an output port, we employed a fixed-priority scheme for 
arbitration.  In general, the diagonal input ports are given the 
highest priority, then the horizontal and vertical input ports, 
and IntR and IntL have the lowest priority. 
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Figure 5.  Example of route selection 

IV. PERFORMANCE AND COST EVALUATION 
Here we describe the methodology used to analyze the 

performance and area cost of DMesh architecture and present 
the results. 

A. Performance evaluation 
To evaluate DMesh performance and compare it with 

NePA, we constructed a SystemC based cycle accurate 
simulator called eNoC.  In eNoC, we can change various 
network configurations, such as network size, topology, buffer 
size, routing algorithm, priority scheme for router arbitration, 
and traffic pattern.  There are four different traffic patterns 
used for measuring the performance: uniform random, bit 
complement, bit reverse and matrix transpose traffic patterns. 
These patterns define the spatial distribution of packets.  



As for the temporal distribution of packets, we adopted the 
self-similar traffic generation techniques.  Self-similar traffic 
has been found in the traffic between on-chip modules in 
MPEG-2 video applications [10] and conventional computer 
networks [11].  Researchers [12] have shown that self-similar 
traffic can be generated by aggregating a large number of 
packet sources which exhibit a long-range dependence 
property.  We used the modeling method proposed in [13] to 
produce the self-similar traffic.  During simulation, each 
source node is either in the ON or OFF state.  A source node 
generates packets when it is in the ON state and it does not 
generate any packets when in the OFF state.  The length of 
time a node spends in the ON or OFF states is determined by 
the Pareto distribution (F(x) = 1 – x-α, 1<α<2).  The equations 
for calculating ON and OFF times are 

ONUTON
α1−=                                                            (1) 

OFFUTOFF
α1−=                                                                    (2) 

 

U is a uniformly distributed value in the range of (0, 1], αON = 
1.9 and αOFF = 1.25. 

We used a standard interconnection network measurement 
setup described in [14].  After a packet is generated, it is stored 
in an infinite queue at the source node and waits for being 
injected into the network.  This mechanism referred to as the 
open-loop measurement configuration isolates the packet 
generation from the network behavior, i.e. the packet 
generation is independent of the network condition.  Each 
simulation executes 10,000 clock cycles for warm-up and then 
continues for 100,000 cycles during which performance 
measurements are conducted. 

Two performance metrics are of importance to us: latency 
and throughput.  In order to compute latency information, each 
flit in eNoC is declared as a SystemC object that carries four 
latency related private variables: generation time (Tg), injection 
time (Ti), arrival time (Ta) and inter-node distance (D).  Inter-
node distance is represented in terms of the number of hops 
between source-destination pairs.  With this information, the 
latency, queuing delay, and blocking time of each flit can be 
calculated by the following equations: 

Latency = Ta  – Tg                                                                     (3) 

Queuing delay = Ti  – Tg                                                           (4) 

Blocking time = Ta – Ti – (D * clock cycle time)                    (5) 

The average inter-node distance is shown in Table I. We 
can see that our routing algorithm makes efficient use of 
diagonal links so that the inter-node distance is reduced in all 
traffic patterns.  Matrix transpose traffic has the largest 
improvement and makes the most of the diagonal links 
because the source-destination pairs are all symmetric to the 
diagonal in a matrix.  

The comparison of average latency in 4x4 and 8x8 
networks under four different traffic patterns is shown in Fig. 8.  
In both 4x4 and 8x8 network size, DMesh outperforms NePA. 
In particular, the 4x4 network under bit reverse and matrix 
transpose traffic, the latency in DMesh is a constant because 

the network is capable of resolving all routing resource 
contentions.  That is, each source-destination pair can obtain 
an alternative path that is not occupied by other packets.  In 
Fig. 6, we compare the queuing delay, traverse latency, and 
blocking time for 4x4 and 8x8 networks under random traffic. 
For different traffic loads, all of these delays are decreased in 
DMesh. The saturation load (the point where throughput no 
longer grows linearly with traffic load) in various 
configurations are summarized in Table III.  It can be observed 
that DMesh is able to sustain higher load than the NePA.  For 
random traffic, the improvement in the 8x8 network is more 
than the 4x4 network which implies that DMesh has a greater 
impact on systems with more nodes.  From Table III, it can be 
seen that the increase in FIFO sizes does not help much with 
the saturation load. 

B. Area cost and power consumption evaluation 
In order to estimate hardware cost, we implemented the 

NePA router, the DMesh router and the FIFO buffer in Verilog 
and performed logic synthesis by using the Synopsys Design 
Compiler to get gate count information.  Various buffer sizes 
were also evaluated.  For the NePA router, we followed the 
architecture described in [7]. The block diagram of DMesh 
router is presented in Fig. 7. The DMesh router has three sub-
routers for processing traffic in the E-subnet, W-subnet and Int 
output port. There is a FIFO associated with each input port. 
Header processing unit (HPU) extracts destination information 
from the header flit and routing logic (RL) is used to decide 
routing path, perform arbitration and control the crossbar 
switch. 

We used TSMC 65nm CMOS generic process technology 
in logic synthesis.  The target clock rate is set to be 800 MHz 
and is met in all configurations.  The results are listed in Table 
II.  From the table, we can observe that the gate count and 
power consumption of the DMesh router with a FIFO depth of 
4/8 is roughly equal to or less than those of the NePA router 
with a FIFO depth of 8/16.  Performance comparisons of these 
four configurations are shown in Fig. 9.  It is clear that DMesh 
has a shorter latency than NePA with similar hardware cost. 
For example, for a 8x8 mesh in random traffic, DMesh with a 
FIFO depth of 4 has a shorter latency than NePA with a FIFO  
depth of 8 and 16. All other configurations have similar results. 
Fig. 9 also shows that the improvements from diagonal links 
are more than those from larger buffers. Therefore, DMesh is a 
more area-efficient architecture. 

TABLE I.  COMPARISON OF AVERAGE INTER-NODE DISTANCE 
4x4 network 

Network Random Bit 
complement 

Bit reverse Matrix 
transpose 

NePA 2.38 4.33 3.32 3.38 
DMesh 1.83 2.55 1.99 1.79 

Reduction 23.1% 41.1% 40.0% 47.0% 
     

8x8 network 
Network Random Bit 

complement 
Bit reverse Matrix 

transpose 
NePA 4.89 9.75 6.19 7.33 
DMesh 3.66 5.80 4.04 3.86 

Reduction 25.1% 40.5% 34.7 47.3 
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Figure 6.  Comparison of various delays in random traffic 

 

 

Figure 7.  Block diagram of DMesh router. 

TABLE II.  GATE COUNT (EQUIVALENT 2-INPUT NAND GATE) OF NEPA 
AND DMESH ROUTER NODE (FIFOS INCLUDED) 

NePA DMesh FIFO 
depth 
(flits) 

Gate 
Count 

Dynamic 
Power (mW) 

Gate Count Dynamic 
Power 
(mW) 

2 18368 6.99 32750 11.53 
4 28654 12.29 46598 20.40 
8 47038 22.32 75382 36.88 

16 85362 42.03 134479 69.45 
32 163330 81.27 250559 134.36 
64 316173 159.33 490820 261.95 

V. CONCLUSION 
We developed a novel DMesh NoC architecture and 

demonstrated its performance enhancement over the previous 
work.  Hardware cost evaluation also shows that our approach 
is more area-efficient than previously reported results.  With 
more links in the network, we anticipate that DMesh has the 
potential of supporting better QoS and fault tolerance 
capability. 
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Figure 8.  Comparisons of average latency in 4x4 and 8x8 mesh networks (FIFO depth = 4). 
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Figure 9.  Comparisons of average latency in 4x4 and 8x8 mesh networks with similar router cost. 

  


