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Abstract—Memory and global interconnect dominate the cost, 
power and performance of Embedded System on Chip (SOC) 
architectures. We contend that most of the architectural 
innovations being pursued today do not directly address these 
challenges. Move Logic Not Data is a scalable architectural 
concept where the movement of data is minimal. The logic that 
transforms/creates data is instead brought to the data. This is 
implemented with the help of Networks on Chip (NOC) which 
allows us to create seamless portioning of memory and logic 
resources. Two additional innovations, further improve the 
efficacy of this fundamental innovation: Reduce the code size. 
Movement of code also costs in terms of energy and latency. We 
propose using ultra complex algorithmic size instructions in the 
form of reconfigurable logic. Conceptual arguments and 
architecture that would implement these innovations are 
presented backed by theoretical analysis of their impact. 
Research challenges are identified that would need to be 
overcome to implement the proposed architecture.  

I. INTRODUCTION 
Nomadic products host a suite of applications, dominated 

by high performance wireless communication and multi-media 
algorithms. The performance requirement of each of these 
applications can be extreme - the PHY layer of the now 
mundane 802.11a/g standard is 5 GIPs [1] and encoding 
decoding a h.264 stream in the meager CIF standard would 
need the ARM’s flagship ARM11 processor to tick at 1.6 GHz 
with no cache misses, which is quite theoretical as it is not 
possible to clock ARM11 processors at this speed even in the 
latest 65 nm technology node. Meeting such extreme 
performance demands, for not one but a suite of applications 
and to power them on battery, produce them for mass market 
and keep the engineering cost manageable is an extreme SOC 
engineering challenge. 

In SOC designs embedded memory is increasing primarily 
because of rapid increase in the amount of data handled by 
communication and multimedia algorithms to achieve higher 
bandwidth or resolution/quality [2].  

The potentially arbitrary communication among 
applications forces system architects to often adopt a shared 
memory model of communication. To satisfy the large storage 
need, the cost and process factors, these products almost 
always having a single large external SDRAM memory. 
Concurrent applications that need high bandwidth memory 
access to the external SDRAM creates a bottleneck and results 
in usage of expensive L1 and L2 caches to hide latency and this 
explains the secondary need for memory. The architecture 
efficacy gap between the energy and performance needs of 
applications - communication, multi-media and security - and 

what is afforded by technology scaling is increasing [3]. Not 
only do the SOC architects have to contend with vastly large 
amount of data, they also have to tackle moving this data 
among applications at high-speed, a particularly difficult task 
in view of the well known fact that while transistors become 
fast with technology scaling, the global interconnect is not 
scaling [4] [5] as shown in Table I. 

TABLE I.  ALU, MEMORY AND INTERCONNECT DELAYS [4] 

Operation  Delay in  130 nm Delay in 50 nm 
   

32b ALU Operation 650 ps 250 ps 
32b Register Read 325 ps 125 ps 
Read 32b across chip RAM 780 ps 300 ps 
Transfer 32b acros chip (10mm) 1400 ps 2300 ps 
Transfer 32b acros chip (20mm) 2800 ps 4600 ps 

II. RELATED WORK  
To close this gap between performance and memory a 

range of techniques have been deployed from the simple 
measures like increasing the clock frequency, increasing the 
depth of pipelining to more sophisticated measures like 
Instruction level parallelism (ILP), thread level parallelism 
(TLP) have been tried and the returns are diminishing [6]. ILP 
is primarily an architectural technique directed at improving 
the computational efficiency, and imposes more stringent 
demands on memory efficiency. 

A. MPSOC  
The latest architectural trend is the move to multi-

processing. Advanced architectures are exploring the 
possibility of using NOC together with Multi-Processors to 
alleviate the bus bottleneck. Like ILP, we contend that the 
move to MPSOC is well justified but the goal is to overcome 
computational bottleneck, it does not effectively deal with the 
memory and the global interconnect challenge, which we argue 
is the central challenge.  

To drive home the point that MPSOC does not alleviate the 
memory and interconnect challenge and are in fact plagued by 
it, consider the example shown in Figure 1, a slightly modified 
schematic of a wireless multi-media platform test chip from 
NXP [7]. This platform is a state of the art MPSOC in 65nm 
and a flagship product of NXP. To meet the large combined 
storage need of these applications and to enable arbitrary data 
communication among them, a large external Low Power DDR 
(LPDDR) memory is instantiated to implement a shared 
memory model of communication. As illustrated in Figure 1 
with black lines, all the application processors need to access 
the external LPDDR creating a huge bottleneck. To hide the 
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latency, the processors have a sizeable L1 caches for 
instruction and data and potentially a system L2 cache. Other 
sub-systems have local buffers. Even a 1 GB/sec memory bus 
is barely able to sustain the worst case bandwidth requirement. 
Even with large, fast caches the processors - ARM1176 and 
Trimedia - typically operate effectively at one-third of their 
clocked frequency. In other words, if the ARM1176 is clocked 
at 400 MHz, the computational throughput is as if it was 
operating at 133 MHz with no cache misses. The inability to 
effectively handle large amount of data and large movement of 
data by this typical state-of-the-art architecture is the root cause 
of huge latencies, wastage of energy and silicon.  
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Figure 1.  Memory Challenge In State of Art SOC 

B. Processor In Memory 
Memory is the central challenge has been recognized by a 

stalwart like Prof. David Patterson at Univ. of California 
Berkeley where a major project called Intelligent RAM 
(IRAM) has been launched. A vector media processor [8] for 
embedded systems is the first concrete outcome of this project. 
Solving the bottleneck to the external DRAM has motivated 
this work to incorporate on chip DRAM to get large 
bandwidth. While on chip DRAM in itself is not an innovation 
as it has been used by graphics chip designers in the past, the 
key contribution is to couple vector lanes to banks of DRAM 
via a fully connected inter-routing network in an architecture 
called VRAM. Recognizing that the fully connected network is 
overkill, a more optimized but less general version called 
CODE has also been developed. The focus of this project is to 
exploit the high on-chip memory bandwidth to fuel vector 
processor creating a complex on-chip communication network. 

Flex RAM [9] is the name of an effort at Univ. of Illinois at 
Urbana Champaign that advocates Processor in Memory (PIM) 
approach to address the memory challenge. In this approach 
memory chips are replaced by 1 MB DRAM banks that 
includes a light processor. An on-chip interconnect connects 64 
such memory bank processor together. Whereas IRAM targets 
embedded applications FlexRAM principally targets server 
applications. Flex RAM has not been commercialized mostly 
because the synchronization problem was not solved. 

Imagine Stream Processor is another effort by Professor 
William Dally in university of Stanford to increase on-chip 
communication bandwidth in order to fuel many ALUs 
arranged in SIMD fashion [10]. In imagine processor, on chip 
memory called streaming memory and streaming register file is 
used to increase the communication bandwidth to 32Gbytes/s. 
Imagine processor utilizes the reference of locality principle 
and reduces the global bandwidth by having local buffers and 
stream register file. The intermediate results are stored in these 
local memories. Data movement between different kernels 
takes place through them as well instead of main memory, thus 
reducing global communication bandwidth requirement [11]. 
Once we have presented our architecture in detail in sections 
III and IV we will show the essential differences between 
imagine and MLND and show how this difference in moving 
logic vs moving data benefits both energy and performance. 

III. MOVE LOGIC NOT DATA 
The objective of this principle is to develop an architecture 

where the movement of data is minimal. The code/logic that 
transforms/creates data is instead brought to the data to 
transform it and/or create new data. Movement of code also 
costs in terms of energy and latency. We propose using ultra 
complex algorithmic size instructions in the form of 
reconfigurable logic. Traditionally, communication among 
applications/tasks has been achieved by either message passing 
or shared memory models. We propose a third alternative, a 
shared logic model. 

Figure 2.  Visualizing the three models of communication. 

Figure 2 provides an intuitive explanation of the differences 
between the three models. The inner circle represents logic and 
the outer circle represents the memory. Conceptually, the 
segments show the multi-processors hosting multiple 
applications and the alignment of segment shows a processor’s 
association with a memory partition. In the message model, the 
inner logic circle does not rotate, the outer memory circle does, 
implying that logic segment once it has transformed data, the 
data moves and gets associated with another logic segment. In 
the shared memory model, the segments in outer circle 
represents temporal windows into a shared memory, at any 
particular time only one temporal window opens and the data is 
fetched and stored in local buffers of the logic segments. 
Generally, more than one temporal window could be open 
representing more than one shared memory. In the model we 
propose, it is the logic circle that rotates, while the memory 
circle stays stationary. The logic circle is shown in relatively 



reduced size to underscore the fact that the code size is 
reduced. The reduction is both spatial - the code should take 
less space compared to the equivalent code in terms of 
assembly instructions and temporally - the code is changed less 
frequently as it represents ultra-large algorithmic size 
instruction. The logic also rotates in spatial and temporal sense. 
Spatial rotation implies that the same reconfigurable function 
can potentially move (its code) from one logic segment to 
another. Temporal rotation implies that different reconfigurable 
functions are sequentially loaded into the same logic segment. 
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LogicIV. QUANTITATIVE ANALYSIS 
Consider an abstract chip shown in Figure 3(a), square in 

shape of side a units, dominated by memory with a small neg-
ligible area occupied by processor in the centre. Also assume 
that the memory is organized in N words. On an average these 
N words would travel approximately a/2 distance. Now if we 
divide this chip into 4 equal parts and each part has its own 
processor in the middle. Assuming that the data in each 
partition stays within the partition and is only operated by the 
processor/logic in that partition, and then the average distance 
that these N words would need travel would be a/4. 
Generalizing, by dividing the memory into ‘n’ partitions, we 
reduce the average distance travelled by each of the N words 
by factor n1/2 compared to the original un-partitioned case. 
Latency is dominated by interconnect and memory access. The 
delay in interconnect is directly scaled down by n1/2 and also its 
switching capacitance. Since the delay in memory is related to 
its size by (SIZE)1/4 [12], the memory delay scales down by 
n1/4. Let LTotal = Lc + Li + Lm, where LTotal is the total latency, Lc 
is the compute latency, Li is the interconnect latency and Lm is 
the memory latency. Further assume that Li = 10Lc and Lm = Lc. 
This is partly based on data shown in Table I. Then LTotal = 12 
Lc. Now if LTotal(n) represents the Total Latency for the n-
partitioned case 
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Where S is the scaling factor, which is the ratio of total 
latencies for the un-partitioned and partitioned case. Now we 
use the above arguments to see its impact on dynamic power 
consumption; the partitioning does not have any impact on 
static power consumption under the assumption that there is no 
change in the total area of the chip. The dynamic power 
consumption for the unpartitioned case is P = CV2f. Now if we 
consider dynamic power for a single partition P(1) in the n-
partitioned case, the switching capacitance scales by n and 
since the Total Latency LTotal(n) has gone down by a factor S, 
we can scale down the operational frequency by S to maintain 
the same throughput. 
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Figure 3.  (a)An embedded soc (b)Embedded soc partitioned into 4 parts. 

Equation 4 is the factor by which the dynamic power 
consumption goes down for the n-partitioned case and is shown 
in Figure 4. The above analysis though broadly accurate does 
not factor in the fact that with the scaling frequency, the Vdd 
would also scale down. Besides partitioning is a key 
complication. Getting a clean partitioning is a non-trivial 
problem and beyond a certain partitioning, the inter-partition 
communication will start to eat into the benefits of partitioning. 

Figure 4.  Power scaling as function of n 

V. MLND ARCHITECTURE 
A conceptual diagram of the MLND architecture is shown 

in Figure 5 which is composed of the following components:  

A. Memory Pool 
Memory Pool is a pool of runtime partition-able memory. 

Each partition has the capacity to hold the dataset required for 
an application. While the MLND architecture provides hooks 
for implementing the partition, it is the software that 
characterizes an application for its memory needs based on 
bounded use case statements and manages the partitioning at 
runtime. Two kinds of memories are used. One that has higher 
bandwidth and relatively low capacity is meant for use by the 
physical (PHY) layer of the seven layer OSI model and the 



other that has relatively lower bandwidth but higher capacity is 
meant for the upper six layers of the OSI model.  
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B. Arithmetic Logic Pool 
Arithmetic logic Pool is a pool of runtime partition-able 

reconfigurable arithmetic logic. This logic will be glued 
together to implement complex integer units to implement 
MACs, Butterflys etc. Like the memory partition, the 
arithmetic logic partition is dimensioned to fulfill the needs of 
an application. Depending on the performance constraint, it is 
the MLND compiler’s task to determine the degree of 
parallelism, algorithmic level pipelining etc. 

Figure 5.  Conceptual view of Move Logic Not Data Architecture 

C. Control logic 
Like arithmetic logic, the pool of control logic provides the 

possibility of creating FSMs on the fly to control the arithmetic 
data path and memory operations. Essentially, the created FSM 
works like the hardware FSM and together with the arithmetic 
logic comes very close to the hardwired ASIC model of 
implementation, albeit with an overhead for some generality 
and the ability to partition. The separation of arithmetic and 
control logic is a key innovation to gain generality while 
maintaining efficiency and performance. This will be achieved 
by composing concurrent FSMs from a library of templates 
corresponding to various computational behaviors. The 
Arithmetic and Control Logic Pools together are dedicated to 
implementing the PHY layer of the OSI model. 

D. Protocol Processor Pool  
In the OSI model, the five immediate layers above the 

physical layer are characterized by control and memory 
intensive functionality and their memory access pattern is very 
irregular as compared to that of PHY layer so they are ideally 
served by a protocol processor. We intend to run the 
Application layer on a separate Application Processor. The 
protocol processors have access to high capacity memory and 
also control the transfer of data between the high-bandwidth 
PHY layer memory partitions and the Protocol processor 
memory partitions. 

E. Interconnect 
The NOC based interconnects implemented in MLND will 

give the flexibility to seamlessly partition the system. This kind 
of partitioning will make custom ASIC processors on the fly 
with its own memory unit, interconnect and data path The 
MLND architecture will have three kinds of NOC based 
interconnects as shown in Figure 6. 

External data NOC brings external data into the chip and 
deposits it into the right memory partition and then once it has 
been processed takes it out to external memory. This kind of 
interconnect requires speed and flexibility and will be made up 
of high speed packet switched NOC.  

Data NOC couples the memory partition to the arithmetic 
and control logic partition and it is this interconnect that 
MLND ensures is qualified as local interconnect. This 
interconnect will connect some memory to some ALU for a 
complete reconfigurable cycle and the interconnection will 
remain fixed for that reconfigurable cycle. This requires less 
flexibility, so we can implement this interconnect with high 
speed circuit switched NOC. 

Control and Configuration NOC is used to control and 
configure the partitions and for operation and maintenance. 
This interconnect don’t require much bandwidth but do require 
flexibility. So low speed packets switched NOC will be 
implemented for this kind of interconnect. 

Figure 6.  Conceptual view of  Partitioning using NOC 

F. System/Application Controller 
The system controller provides the runtime management 

services of allocating memory and logic/arithmetic/protocol 
processor pools and partitioning. Figure 5 shows two RISC 
processors, System Controller and Application Processor, 
flanking the entire MLND structure. One of them is intended as 
a systems controller and the two would share the application 
layer functionality of the applications. The choice of two RISC 
processors is arbitrary at this stage; the actual number will be 
the outcome of the dimensioning of the MLND architecture by 
the design tool proposed as a research topic in this project. 



G. Run Time Management 
The MLND runtime support provides interface to the 

external world, manages resources in the MLND architecture 
and co-ordinates execution of the applications. The MLND 
Runtime System is conceptually made up of three interacting 
components. The External Interface manager interacts with the 
external world. This involves interrupts that trigger 
applications and peripherals responsible for exchange of data 
between external world and the MLND system.  Resource 
manager, as the name suggests manages the resources like 
memory, arithmetic and control logic, bandwidth and 
energy/battery. When an external signal, a touch screen, a jog 
dial or a radio signal triggers an interrupt, the External 
Interface Manager passes on the request to the Resource 
Manager. The Resource Manager in turn analyzes the available 
resource, makes an allocation and passes on the constraints and 
requirement to the Application Manager. It is the Application 
Manager that instantiates the controllers: the application 
controller, the protocol processing code and the PHY layer 
controllers based on the constraints received from the Resource 
Manager. When an application is complete, it informs The 
Resource Manager, via the Application Manager resulting in an 
update of the available resources. 

Besides the physical resources, the other key resource that 
the MLND Runtime Manager would have to handle is that of 
energy. The MLND architecture, from grounds up is built to 
implement the philosophy, if a resource is not being used, keep 
it shut. The other key energy management principle is to run 
the application at the optimal voltage frequency operating 
point, using the Dynamic Voltage Frequency Operating 
principle. The MLND architecture will introduce the novelty of 
having dynamic voltage islands and the RTM will play a 
critical role in its management 
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H. Methodology 
MLND programming methodology would map a suit of 

applications, typified by modems and codecs, to the MLND 
architecture. While the details of the Design Environment (DE) 
are the objective of the proposed research, the conceptual steps 
and the components involved in the mapping process are 
shown in Figure 7. 

1) Step 1. System Partitioning 
In this step, the MLND DE partitions the application into 

three sets of functionality, each intended to run on a different 
kind of compute engine adapted to the nature of the 
functionality. The Application Layer on a RISC processor, the 
next five protocol processing layers on a customized protocol 
processor and the Physical layer on the reconfigurable 
arithmetic/control logic tiles. As a result of this step, we get the 
total application partitioned into the Application layer, the 
Protocol Processing Layers and the Physical Layer. These three 
partitions now communicate using the NOC based interconnect 
structures of the MLND architecture. 

2) Step 2. System Dimensioning 
This step identifies the overall storage need of the 

application, dimensions it and budgets the energy and 
performance constraints among the different partitions. We rely 
on the fact that the MLND concept primarily targets DSP 

oriented applications, where the nature of functionality, 
characterized by isochronous traffic, and the standards 
specification (from IEEE, ITU, MPEG etc) considerably helps 
gauge the storage needs. Further narrowing the search space 
are the architectural constraints that are imposed by the MLND 
architectural template and the memory technologies available. 
Lastly, the way application is modeled in terms of its data 
organization and access to it has a strong bearing on the storage 
dimensioning. The result of this step is the critical decision on 
what parts of dataset will be on chip and off-chip. Also decided 
in this step are the dimensions of the high bandwidth PHY 
layer memory and the high capacity Protocol layers memory. 
These decisions are also key inputs to the run time 
management system that needs to implement these partitions. 

After the Steps 1 and 2, it should be possible to create a 
transaction level simulation model of the application, where the 
different partitions and storage interact using the MLND 
control, configuration and interconnect infrastructure. The next 
steps would refine the individual partitions.  

3) Step 3. Protocol Layer Compilation 
This step refines the protocol processing layers. The 

implementation style is software running on a RISC processor 
enhanced with custom instructions and internal memory 
structure to optimize the energy and performance of the 
protocol processing functionality. Creating such ASIPs 
(Application Specific Instruction Processors) is well researched 
with MESCAL [13] methodology as a prime example of this 
and will be the basis for this step. The logic for enhancing the 
RISC processor is built from reconfigurable tiles that can be 
configured to do various protocol processing functions. This 
makes the protocol processing pool homogenous and gives the 
runtime system freedom to place an application anywhere as 
required by the dynamic runtime situation. 

Figure 7.  The MLND Design Flow 

4) Step 4. Physical Layer Compilation 
This step dimensions and instantiates the reconfigurable 

compute engine composed of arithmetic and control logic tiles. 
The key insight behind this step is that the physical layer 
functionality in most cases is composed of standard DSP 

and control logic tiles. 
The key insight behind this step is that the physical layer 
functionality in most cases is composed of standard DSP 



functions whose architectural implementation space is pretty 
well understood. Examples of such functions are FFT, Viterbi, 
FIR filters etc. This understanding of architectural space is 
captured as templates and used to narrow the design space that 
the synthesis tool would otherwise have to search. For the few 
functions that do not have templates, we intend to use existing 
High Level Synthesis tools to create an implementation.  

The results of this layer are the configuration codes that 
implement the arithmetic and address generation parts for the 
different algorithms/functions and the configuration codes for 
the control logic to implement the Finite State Machine (FSM) 
that controls the arithmetic and address generation logic. This 
layer also synthesize the PHY layer control and memory logic 
that glues together individual algorithms/functions that make 
up the PHY layer. This controller is again implemented as an 
FSM, and controls the individual algorithmic level controller 
synthesized in steps 3 & 2. More importantly, this controller is 
responsible for controlling the pipeline decision.  

An additional key aspect regarding evaluation and 
estimation in the Steps 3 and 4 is that the MLND is an 
architecture built using regular tiles, and these tiles are built 
using full-custom macro implementation styles, this leaves 
little room for uncertainty in wiring delay as is common using 
the logic synthesis/standard cell based methodology. This 
approach, we believe will be key to our ability to achieve not 
only the best energy / performance metrics, but also the 
regularity of layout makes it possible to predict the energy and 
performance. 

5) Step 5. Application Layer Compilation 
In this step, the application layer is compiled to the RISC 

based application processor. While compilation to the RISC 
processor is straight forward, the application layer is essentially 
a controller that interfaces to the Protocol Processing layers via 
the MLND architectural elements. The Runtime Management 
System interacts with the Application Controller as the main 
agent for activating an application and knowing when an 
application is complete. 
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VI. COMPARISON WITH PREVIOUS WORK 
MLND is a flexible, scalable general purpose architecture 

which is not only suitable for nomadic products but equally 
suitable for high performance computing systems like base 
station and super computing. The computational requirements 
for a nomadic product may change with time and depends on 
the usage. For instance a nomadic user at times may be using 
MP3 player and browsing, at some other time he may only be 
using it as a GSM/3G phone, doing a video call and at most of 
the time the phone is sitting idle. So a nomadic product like cell 
phone requires flexibility so that it could offer the required 
computational power according to user’s need and switch 
off/on additional resources. 

MLND is a natural candidate for such a requirement. This 
ability to create runtime partitions of memory, arithmetic and 
control logic to implement custom ASIC like macros are the 
key to implementing the MLND theme: once the data come 
into the memory partition, the reconfigurable logic (arithmetic 
and control and protocol processing) implements a succession 

of algorithms to transform the data. The architecture guarantees 
that the memory partition and the arithmetic and control logic 
partitions are geometrically close enough that they qualify as 
being connected via local interconnects that does scale with 
technology as opposed to the global interconnects that do not 
scale with technology[5]. 

In MLND the separate control logic controls a set of 
partitioned memory and logic blocks called cluster of 
memory/logic. The partitioning will be done by using NOC 
[15]. Kernels will be implemented on this cluster of 
memory/logic. This kind of partitioning will make custom 
ASIC processors on the fly with its own memory unit, 
interconnect and data path. The data path unit will be parallel 
or serial as required. These custom processors will act like 
multi core/multi processors, exploiting (Instruction Level 
Parallelism), or DLP (Data level parallelism), algorithm level 
pipelining where all algorithms can be executed concurrently, 
and working in a pipelined fashion. Every cluster has its own 
individual control which makes it possible to clock them at 
different clock frequency, hence implementing dynamic 
voltage frequency scaling techniques to reduce power or switch 
them on off by resource manager. 

The basic theme of MLND is to keep the wire distance 
between memory and logic minimum (local wire) so that the 
power consumption on interconnect is very small. In traditional 
architectures, ALUs are fueled by feeding data from memories 
which are far from them; hence dissipating a lot of power in 
interconnects. Such architectures do not scale with technology. 
In MLND the logic close to data memory is re-programmed to 
perform operation on the data stored in that memory. Imagine 
processor [10] [11] is also designed keeping interconnect 
power consumption in mind and is closest to MLND theme. A 
comparison of data flow of OFDM in MLND with Imagine 
processor is shown in Figure 8.  

Figure 8.  (a) Imagine Processor (b) MLND 

In Imagine processor data enters into the first logic block 
i.e. Convolutional Coding (CC), processed and then saved into 
the memory as shown in Figure 8. From there it goes to 
Puncturing (P), then back to memory. It goes to Interleaving 
(I), QAM Mapping (QM) and IFFT in the same way before 
going to the main memory. The total logical distance travelled 
by the each data word, in case of Imagine processor, is L+10W. 
Assuming the arithmetic blocks are of same dimensions, in 
case of MLND the kernels are reconfigured instead of moving 
the data; reducing the total distance travelled by each data word 
to 10W. An OFDM symbol uses 64point FFT. A DVB 



standard uses 2048 points FFT. A reconfigurable DPU 
designed for MLND take 3-bits to configure. A radix-4 FFT 
butterfly uses 14 such DPUs. Suppose Z is the energy 
consumed by single bit to travel L distance shown in Figure 8. 
The Imagine processor configures the data path once and keeps 
its state for the life time of the application. On the other hand, 
MLND reconfigures the data path after a certain 
reconfiguration time. The number of bits needed to reconfigure 
the data path, travel on average L/2 distance. Assuming the 
arithmetic block of same dimensions, the energy comparison 
between moving data and code is done in Table II; which 
shows that it takes more energy to move data then moving the 
code as code size is much smaller then data size. Table II 
shows results for just one sample of FFT. Of course the 
hardware will operate on many more samples before 
undergoing reconfiguration which further confirms that code 
movement is cheaper then data movement in terms of energy. 
One may argue that code movement will be global and data 
movement will be local. According to [5] in 65nm global wires 
are 10 times slower then local wires, but the data in the Table II  
shows that energy for movement of code, in case of 64 point 
FFT, is 100 times less then energy required for movement of 
data.  The figures are even better for 2048 point FFT.  

 

TABLE II.  ENERGY PER BIT FOR DATA MOVEMENT IN IMAGINE 
PROCESSOR VS CODE MOVEMENT IN MLND 

FFT  Energy per bit for Data 
Movement 

Energy Per Bit for Code 
movement 

   
OFDM 64 points 64x16xZ=1024Z 14x3x5xZ/2=105Z 
DVB 2048 points 2048x16xZ=33554432Z 14x3x5xZ/2=105Z 
Minimizing the movement of data at PHY layer is a good 

thing but not sufficient. Because huge movement of data also 
happens at MAC layer and if that is left un-addressed the 
solution as a whole will still suffer from performance, energy 
and cost in-efficiencies. That is where the protocol processing 
layer takes over takes to minimize the data movement. 

VII. CONCLUSION 
MLND is an energy aware, scalable architecture, which 

minimizes the data movement inside the chip hence reducing 
power consumption. It has a regular structure and can be 
implemented in full custom. Ability to know exact wire lengths 
because of full custom implementation, and energy aware 
mapping and runtime system, makes it significantly different 
and better from the competitors. Traditional architectures lack 

this ability. MLND is flexible enough to be used in nomadic 
products as well as high end computing systems and super 
computers. 
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