
First International Workshop on

Network on Chip Architectures
(NoCArc 2008)

In conjunction with the

41st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-41)

November 8th, 2008

Lake Como, Italy

PROCEEDINGS

Foreword
The papers in this volume forms the proceedings of the First International Workshop on Network on
Chip Architectures (NoCArc 2008) held in conjunction with the 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-41), November 8th, 2008, Lake Como, Italy.

The workshop aims to provide a focused forum for researchers to present and discuss innovative ideas
and solutions related to design and implementation of complex Systems on Chip (SoCs) which use a
packet switched on-chip network as interconnection or communication infrastructure. Such on-chip
networks are commonly referred as Networks on Chip (NoC). NoC architecture research requires
combining knowledge from many areas like circuit design, computer architecture, data communication
and design automation. This interdisciplinary nature of research provides many challenges and
opportunities for NoC architecture designers. Over the last 7-8 years, there has been an explosion of
proposals related to NoC topologies, router designs and routing algorithms. In spite of this, we feel we
are still in an exploratory stage. Due to application specific nature of SoCs used in embedded systems,
it is unlikely that a single NoC architectural proposal can be declared as the best for all designs. We
feel such focused workshops can help collect � good� solutions (or information and links about � good�
solutions) currently available which can be useful to the SoC and embedded systems industry.

The eight accepted papers in the workshop are divided into three themes, namely, micro-architectural
aspects of NoC routers, performance evaluation of NoC-based SoCs, and prospective architectural
proposals for on-chip interconnection systems. There were 18 submissions. Their authors were from 11
countries spread over the whole world. Each submitted paper has been reviewed by three to four
reviewers. The deliberations were conducted by the Program Committee electronically. The Program
Committee selected 8 papers for presentation at the Workshop (an acceptance rate of 44%). The papers
were judged based on originality, quality and relevance to the subject area of the Workshop.

We would like to thank all of those who submitted papers for consideration, the Program Committee
members for their invaluable contributions, and the MICRO-41 Organizing Committee for giving us
the opportunity to host NoCArc 2008 Workshop. We hope that this workshop will become an annual
event. Unfortunately, this workshop did not receive papers related to fault tolerance, memory
architectures and reconfiguration aspects of NoC. We also hope that the future versions of the
workshop will be able to attract good papers in these very important aspects for on-chip networks.

Lake Como, 8
th
 November 2008

Maurizio Palesi Shashi Kumar

Chairs of NoCArc 2008 Workshop

NoCArc 2008 — November 8th, 2008, Lake Como, Italy i

Technical Program Committee

• Federico Angiolini, iNoCs, Switzerland

• Davide Bertozzi, University of Ferrara, Italy

• Giorgos Dimitrakopoulos, FORTH, Greece

• José Flich Cardo, Universidad Politécnica de Valencia, Spain

• Ahmed Hemani, Royal Institute of Technology, Sweden

• Rickard Holsmark, Jönköping University, Sweden

• Anshul Kumar, Indian Institute of Technology (Delhi), India

• Shashi Kumar, Jönköping University, Sweden

• Marcello Lajolo, NEC Laboratories America, NJ, USA

• Zhonghai Lu, Royal Institute of Technology, Sweden

• Srinivasan Murali, iNoCs, Switzerland

• Juan Manuel Orduña Huertas, Universidad de Valencia, Spain

• Maurizio Palesi, University of Catania, Italy

• Davide Patti, University of Catania, Italy

• Partha P. Pande, Washington State University, USA

• Timothy M. Pinkston, University of Southern California, USA

• Carlo Pistritto, STMicroelectronics, Italy

• Tor Skeie, University of Oslo, Norway

• Juha-Pekka Soininen, VTT, Finland

• Vittorio Zaccaria, Politecnico di Milano, Italy

NoCArc 2008 — November 8th, 2008, Lake Como, Italy ii

Table of Contents

Keynote talk: Managing Heterogeneity in Future NoCs

José Duato, UPV Valencia, Spain
1

Session I  Router Microarchitecture
Session Chair: Maurizio Palesi, University of Catania, Italy

5

Planar Adaptive Router Microarchitecture for Tree-Based Multicast Network-on-Chip

Faizal Arya Samman, Thomas Hollstein and Manfred Glesner - TU Darmstadt, Germany
6

DMesh: a Diagonally-Linked Mesh Network-on-Chip Architecture

Wen-Hsiang Hu, Seugn Eun Lee and Nader Bagherzadeh - University of California, Irvine, USA
14

Session II  Performance Evaluation
Session Chair: Ahmed Hemani, Royal Institute of Technology, Sweden

21

A Generic Traffic Model for On-Chip Interconnection Networks

Jun Ho Bahn and Nader Bagherzadeh - Qualcomm Inc., USA and UC Irvine, USA
22

A System-C based Microarchitectural Exploration Framework for Latency, Power and

Performance Trade-offs of On-Chip Interconnection Networks

Basavaraj Talwar and Bharadwaj Amrutur - ECE, Indian Institute of Science, Bangalore, India

30

Application Specific Buffer Allocation for Wormhole Routing Networks-on-Chip

Liwei Wang, Yang Cao, Xiaohui Li and Xiaohu Zhu - EIS, Wuhan University, China
37

Session III  Prospective Architectural Proposals
Session Chair: Shashi Kumar, Jönköping University, Sweden

43

Scalable CMOS-compatible photonic routing topologies for versatile networks on chip

Alberto Scandurra and Ian O'Connor - STMicrelectronics, Italy and Lyon Institute of Nanotechnology,

France

44

Move Logic Not Data: A Conceptual Presentation

Ahmed Hemani and Muhammad Ali Shami - Royal Institute of Technology, KTH, Sweden
51

Hierarchical Agent Architecture for Scalable NoC Design with Online Monitoring Services
Alexander Wei Yin, Liang Guang, Pasi Liljeberg, Pekka Rantala, Ethiopia Nigussie, Jouni Isoaho and

Hannu Tenhunen - University of Turku, Finland

58

NoCArc 2008 — November 8th, 2008, Lake Como, Italy iii

NoCArc 2008 — November 8th, 2008, Lake Como, Italy iv

Keynote Talk

Managing Heterogeneity in Future NoCs

Jose Duato

Parallel Architectures Group
Technical University of Valencia, Spain

 jduato@disca.upv.es

Jose Duato received the MS and PhD degrees in electrical engineering
from the Technical University of Valencia, Spain, in 1981 and 1985,
respectively. Currently, Dr. Duato is Professor in the Department of
Computer Engineering (DISCA) at the same university. He was also an
adjunct professor in the Department of Computer and Information Science,
The Ohio State University.

His current research interests include interconnection networks and
multiprocessor architectures. Prof. Duato has published over 400 refereed
papers. He proposed a powerful theory of deadlock­free adaptive routing

for wormhole networks. Versions of this theory have been used in the design of the routing algorithms
for the MIT Reliable Router, the Cray T3E supercomputer, the on­chip router of the Alpha 21364
microprocessor, and the IBM BlueGene/L supercomputer. Prof. Duato also developed RECN, the only
truly scalable congestion management technique proposed to date, and a very efficient routing
algorithm for fat trees that has been incorporated into Sun Microsystem's 3456­port InfiniBand
Magnum switch.

Prof. Duato is the first author of the book “Interconnection Networks: An Engineering Approach”. Dr.
Duato served as a member of the editorial boards of IEEE Transactions on Parallel and Distributed
Systems, IEEE Transactions on Computers, and IEEE Computer Architecture Letters. He has been the
General Co­Chair for the 2001 International Conference on Parallel Processing, the Program
Committee Chair for the Tenth International Symposium on High Performance Computer Architecture
(HPCA­10), and the Program Co­Chair for the 2005 International Conference on Parallel Processing.
Also, he served as Co­Chair, member of the Steering Committee, Vice­Chair, or member of the
Program Committee in more than 55 conferences, including the most prestigious conferences in his
area (HPCA, ISCA, IPPS/SPDP, IPDPS, ICPP, ICDCS, Europar, HiPC).

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 1

Managing Heterogeneity in Future NoCs
Jose Duato

Parallel Architectures Group
Technical University of Valencia, Spain

email: jduato@disca.upv.es

Abstract—Although most research on NoCs has assumed the
use of regular topologies like 2D meshes, some current trends in
chip architecture, combined with expected technology limitations
and usage models, will very likely oblige designers to consider less
regular topologies to provide the best cost-performance trade-off.
Moreover, the set of nodes interconnected by those NoCs willalso
be heterogeneous, including computational cores of different sizes
and computing power, cache blocks and local stores, accelerators
of different kinds, and memory controllers. The memory wall
problem will likely be addressed by using 3D integration, which
will increase heterogeneity significantly, due to the need for
locating the hottest cores in the top layer.

Therefore, in order to deliver the best cost-performance trade-
off while minimizing resource and power consumption and
providing the maximum flexibility, heterogeneity needs appro-
priate hardware support in the NoC. This talk motivates the
need for efficiently supporting heterogeneity, and sketches some
results along this direction, describing power-efficient routing
algorithms that provide support for multiple heterogeneous,
possibly overlapping regions (e.g. virtual machines, coherence
domains) in the presence of faulty components.

I. I NTRODUCTION

Most theoretical studies of interconnection networks assume
homogeneous systems with regular topologies. Homogeneity
simplifies the design of topologies, routing and load balancing
strategies. It also allows the use of a single switch design as a
building block for implementing larger switch fabrics. As the
number of cores per chip increases, buses are becoming a bot-
tleneck, and researchers started to consider switched networks
with point-to-point links in order to make communication
bandwidth more scalable. In doing so, the initial proposals
for networks on chip (NoCs) inherited many properties of the
interconnection networks that were proposed in the 80s. The
reason for this is that they share a common goal: minimizing
packet latency while devoting the minimal amount of resources
to the network. In the case for the interconnection networks
developed in the 80s, the goal was to implement single-chip
routers. In the case for NoCs, a goal is to minimize silicon
area requirements.

Therefore, it is not surprising that the initial proposals
for NoCs are based on wormhole switching, two-dimensional
meshes, and dimension-order routing (DOR). Wormhole
switching delivers low latency with very small buffers, and
hence, with small silicon area and power consumption. DOR
is easy to implement with a finite-state machine, and leads to
very compact and fast routers. Finally, 2D meshes not only
were considered the optimal topology for wormhole networks
in the 80s. They also match the 2D layout of current chips,

enabling the lowest communication latency among neighbors
and minimizing wiring complexity. Interestingly enough, some
theoretical studies in the 80s concluded that the 2D mesh is the
optimal topology under the assumption of constant bisection
bandwidth but such a constraint never became true in practice.
However, it may become true for NoCs, therefore emphasizing
the use of 2D topologies.

II. SOURCES OFHETEROGENEITY

A. Architectural Sources

Current chips have significantly more complex requirements
than just minimizing latency and power consumption. First
of all, they need to be connected to the external components
(e.g. DRAM modules), and most current processors already
integrate one or more on-chip memory controllers. Even if
the number of memory controllers is increased as the number
of cores increases, there will always be a smaller amount of
memory controllers than processing cores or cache blocks.
As an example, current graphics processing units (GPUs)
integrate several hundred cores and less than ten memory
controllers. This introduces heterogeneity in the topology of
the interconnection network, which must properly interconnect
those devices. Moreover, it also introduces asymmetry in the
traffic patterns since memory controllers are usually located
near the chip edges. Additionally, since memory bandwidth
will become a scarce resource, traffic destined to memory
controllers will very likely produce congestion within theNoC,
no matter how overdimensioned it is.

Another potential source of heterogeneity for the NoC is the
fact that the devices attached to it have different functionality.
In addition to processing cores, there are also cache blocks,
which are either shared by all the cores or by subsets of them.
Those cache blocks will likely differ in size and shape from
the cores, possibly introducing irregularities in the topology
of the NoC. Even if caches and cores have a similar size, they
will generate different traffic patterns that may recommend
some asymmetry in the bandwidth of the different links, or
even the use of separate networks for different purposes. For
example, a design may implement a 2D mesh topology for the
transmission of cache lines and a binary tree (or even a fat tree)
for the ordered transmission of coherence commands. This
kind of solutions have already been implemented in off-chip
networks (e.g. Sun E10000), and therefore, are not unexpected
for NoCs as well.

Although the number of cores per chip is increasing at a
steady rate, many applications are still sequential. Therefore,

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 2

manufacturers are wondering whether increasing the number
of cores per chip for the desktop, laptop and mobile markets
is a good idea. In this situation, the best way of using the
increasingly higher number of transistors per chip that will
become available is by integrating more functionality into
the processor chip. The next large component that will be
integrated is the GPU, at least for application areas that do
not require top graphics performance (e.g. all the desktop
and laptop applications except for gaming and engineering
design). Both Intel and AMD announced plans for this kind of
integration. As a consequence, they need to figure out how to
effectively use those GPUs in the server market so as to reuse
CPU designs. The solution to this problem has already been
provided by Nvidia, and consists of using the GPU as acceler-
ator for numerical applications. High-performance computing
(HPC) platforms and datacenters will make good use of those
accelerators, not only to drastically increase computing power
at a relatively low cost, but also to dramatically enhance
the Flops/watt ratio. Again, the implementation of a GPU
into the processor chip will introduce significant amount of
heterogeneity, due to both the different size of this component
and the very different traffic requirements with respect to
general-purpose processing cores.

Another way of increasing the Flops/watt ratio is by re-
placing a small number of complex out-of-order cores with
deep pipelines by a large number of simple in-order cores
with shallow pipelines. However, manufacturers did not make
that move because sequential applications would run much
slower, and therefore, the number of sales for multicore
chips would have dropped dramatically. A possible approach
for increasing the Flops/watt ratio while being able to run
sequential applications very fast consists of implementing a
small number of complex cores (e.g. one or two) and a large
number of simple cores, possibly with the same instruction set
architecture (ISA). This is the approach followed by the Cell
processor, although in this case the ISA is different for simple
and complex cores, thus making it more difficult to generate
code for this processor. Again, this strategy constitutes another
source of heterogeneity, not only because of the different size
of the different kinds of cores, which will force the use of
irregular topologies, but also because of the different traffic
requirements.

B. Technology Sources

In addition to the above mentioned architectural sources of
heterogeneity, manufacturing processes will also force design-
ers to adopt solutions that will end up introducing even more
heterogeneity. One of the problems is that, as integration scale
increases, the number of manufacturing defects is expectedto
increase. Therefore, yield will drop dramatically unless future
designs incorporate support for fault tolerance. Fortunately,
interconnection networks can implement relatively cheap so-
lutions to increase fault tolerance by using the alternative
paths provided by the network topology. Such a use, however,
introduces asymmetries in the way links can be used, both
to avoid deadlocks and also because fault-free regions will

have more alternative paths, and therefore, will be less heavily
loaded.

Another source of heterogeneity is the expected increase in
manufacturing process variability. Up to now, chips are tested
to determine the clock frequency at which they can safely run,
and therefore, clock frequency is determined by the slowest
devices in the chip. This is acceptable because variability
is still relatively small. As process variability increases, the
former approach becomes less interesting, and researchersare
proposing different ways to allow different parts of the chip to
run at different speeds. When those techniques are applied to a
NoC, they result in links and/or switches that require a variable
number of clock cycles to transmit information, depending on
where they are located.

It is also predicted that VLSI technology will reach a point
in which it will be feasible to integrate more transistors aslong
as they are not all active at the same time. Future processor
chips will implement sophisticated temperature controllers
able to dynamically adjust clock frequency for independent
clock domains, thus introducing functional heterogeneityeven
in completely homogeneous systems. But this will affect
performance guarantees for different virtual machines (see
discussion at the next section). Moreover, pipelined switching
techniques like wormhole and virtual cut-through perform
quite poorly when some links and/or switches in the path are
slower than others, because traffic accumulates at the buffers
located before entering the slower regions and may even
produce congestion. So, this problem needs to be addressed
in order not to waste bandwidth.

The temperature problem will be aggravated with the intro-
duction of 3D stacking technology. Effectively, 3D stacking is
considered to be the most promising technology to alleviate
the memory bandwidth problem of future multi-core chips.
By stacking multiple DRAM chips together with a multi-core
chip, it will be possible to drastically reduce the pressureon
external memory bandwidth as well as memory access latency.
However, those stacked chips will need to dissipate heat, and
that heat must go through the already very hot, temperature-
throttled multi-core chip. In addition to this, 3D stackingis
an important source of heterogeneity. Not only chips in the
stack will be different. They will also have very different
communication requirements. Moreover, communication with
each chip will be significantly faster than communication from
chip to chip in the stack, due to the much larger number of
wires in the metal layers with respect to the number of vias
between chips.

C. Usage Model Sources

Finally, the usage model is also a source of heterogeneity.
Current market trends, including outsourcing of IT services,
have led to the massive adoption of virtualization as a so-
lution to the problem of running applications from different
customers in the same computer while guaranteeing security
and resource availability. Moreover, in order to optimize
utilization, resources are dynamically assigned to different
virtual machines according to customer application require-

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 3

ments. As a beneficial side effect, virtualization splits a given
computer into smaller chunks, thus reducing the severity of
the problem of developing parallel code. Providing efficient
virtualization support at the chip level is not trivial because
splitting the set of cores into smaller disjoint subsets is not
enough. It is also necessary to guarantee that each partition
forms a region whose internal traffic does not interfere with
traffic from other regions. This implies that regions should
be formed by a contiguous set of nodes and that the routing
algorithm is properly defined, which is not trivial because
certain paths must be forbidden to avoid deadlocks. Moreover,
each region should contain cores and caches in order to be
as independent as possible from each other region, which
again has some implications on the component layout and
introduces heterogeneity at a finer granularity. Anyway, shared
caches will introduce some interference among regions. Even
if all the cache levels within the chip were private, memory
controllers must be shared. This also implies that memory
controllers must be an integral part of each and every region,
thus introducing even more heterogeneity in the definition of
regions.

Finally, there are application areas in which the application
to run is fixed (e.g. some embedded devices). In those cases, it
is very likely that the application generates non-uniform traffic,
sometimes even using only a subset of the links in the NoC.
In those cases, efficiently supporting heterogeneity can lead
to significant savings in silicon area and power consumption.
For instance, an application specific design may implement
only the links and switches that are really needed. Also,
different links may provide different bandwidth, according to
the application requirements.

III. SOME PROPOSEDSOLUTIONS

Although there exists no generic solution addressing all
of the problems mentioned in the previous section, several
solutions have been proposed to address one or more of those
problems. Some of those solutions are sketched below.

A. Efficient Unicast and Multicast Support for CMPs

bLBDR [2], an enhanced version of Logic-Based Dis-
tributed Routing (LBDR) [1], is a flexible and efficient unicast
and multicast routing method that removes the need for using
routing tables (both at end-nodes and switches), and provides
support for disjoint and overlapped regions (or domains) ina
NoC, thus enabling the concept of virtualization at the NoC
level. bLBDR fulfills several of the requirements mentioned
in the previous section, including support for virtualization,
partitionability, fault tolerance, traffic isolation and broadcast
across the entire network as well as constrained to coherency
domains or regions. In particular, bLBDR allows the definition
of deadlock-free unicast and multicast routing algorithmsfor
irregular topologies and non-rectangular regions that deliver
high performance, provide efficient support for cache co-
herence protocols by implementing collective communication
operations, provide very efficient support for partitioning and
virtualization by allowing the definition of multiple regions

with traffic isolation, and provide support for reconfiguration
and fault tolerance. It also provides support for accessing
shared components like shared caches and memory controllers
by supporting the definition of overlapped regions. All of this
is achieved by a small and power efficient routing logic that
delivers low latency as well as 4X area savings and 17X power
reduction when compared to a routing table in an 8 × 8 mesh
NoC. In fact, this design is almost as compact as the one
for switches based on finite state machines (e.g. DOR), while
providing almost the same degree of flexibility as the designs
based on routing tables.

B. Application Specific Routing Algorithms for NoCs

A general-purpose multi-core processor is very flexible but
may not be optimal for embedded systems that execute a
single application. One way to specialize a general-purpose
multi-core chip built using NoC principles is to provide a
mechanism to configure an application-specific deadlock-free
routing algorithm in the underlying NoC.

In [3], the authors present a methodology to specialize
the routing algorithm in table-based NoC routers. It tries
to maximize the communication performance while ensuring
deadlock-free routing for an application. The paper demon-
strates through analysis that routing algorithms generated by
this methodology have higher adaptivity as compared to turn-
model based deadlock-free routing algorithms for a mesh
topology. Performance evaluation with traffic generated byreal
applications shows that the routing algorithms generated by the
proposed methodology achieve an improvement in delay close
to 50% and 30% over deterministic XY-routing algorithm and
adaptive Odd-Even routing algorithm, respectively.

REFERENCES

[1] J. Flich, S. Rodrigo, and J. Duato, “LBDR: Efficient Routing Implemen-
tation in NoCs”, in Workshop on Interconnection Network Architectures
On-Chip, Multi-Chip, 2008.

[2] S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient Unicast and
Multicast Support for CMPs”, in 41st Annual IEEE/ACM International
Symposium on Microarchitecture, 2008.

[3] M. Palesi, R. Holsmark, S. Kumar, V. Catania, “A methodology for
design of application specific deadlock-free routing algorithms for NoC
systems”, Proceedings of the 4th international Conferenceon Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), pp. 142-
147, 2006.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 4

Session I

Router Microarchitecture

Session Chair: Maurizio Palesi, University of Catania, Italy

Planar Adaptive Router Microarchitecture for Tree-Based Multicast Network-on-Chip

Faizal Arya Samman, Thomas Hollstein and Manfred Glesner - TU Darmstadt, Germany
6

DMesh: a Diagonally-Linked Mesh Network-on-Chip Architecture

Wen-Hsiang Hu and Nader Bagherzadeh - University of California, Irvine, USA
14

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 5

Planar Adaptive Router Microarchitecture for
Tree-Based Multicast Network-on-Chip

Faizal A. Samman, Thomas Hollstein and Manfred Glesner
Institute of Microelectronic Systems
Darmstadt University of Technology

Karlstr. 15. D-64283 Darmstadt
Email: faizal.samman, thomas, glesner@mes.tu-darmstadt.de

Abstract— Adaptive tree-based multicast routings for
networks-on-chip (NoC) in a mesh planar router architecture
are presented in this paper. Multicast packets are routed and
scheduled in the NoC using a local Identity-based multiplexing
technique with wormhole switching. The identity-tag attached to
every flit allows different flits of different packets to be mixed in
the same queue and enables to implement a fair flit-by-flit round
arbitration to share communication links. Hence, deadlock
in intermediate nodes as a main problem in the tree-based
multicast routing can be handled efficiently and effectively. Some
static and planar adaptive routing schemes are implemented
to evaluate the impact of the routing algorithms over the NoC
performance. The router prototypes have been also synthesized
using 130-nm and 180-nm standard-cell technologies.

I. INTRODUCTION

Services in terms of efficient routing and scheduling are
critical to the performance of the NoC-based multicore proces-
sor systems. Historically, the first generation multicomputers
supported only unicast communication (a single PE sends a
message to a single PE unit). Nowadays, the recent multi-
computers have begun to implement collective communication
services. Collective communication services embrace multicast
(the same message is sent from a source node to an arbitrary
number of destination nodes), scatter (different messages are
sent from a source node to an arbitrary number of destination
nodes), and broadcast (the same message is sent from a
source node to all nodes in the network). With software
implementation, a multicast message can be injected into the
network by sending a separate copy of the messages from
the source to every destination node (unicast-based multicast
delivery). However, this approach is unefficient in terms of
communication latency and energy.

The multicast delivery service has been intensively used
in large-scale multiprocessor systems, and has been a fun-
damental service of some data parallel computer languages.
The following points present the need for multicast services
in parallel computing and multicomputer systems [1].
• Numerous parallel algorithms, e.g. parallel search and

parallel graph algorithms, has been shown to benefit from
the use of multicast service.

• In a single-program multiple-data (SPMD) mode of com-
putation, multicast communication is of benefit. The same
program is executed on different processors with different
data, and several data are proceeded in parallel.

• In a data parallel mode of computation, a variety of
process control operations and global data movement
such as reduction, replication, permutation segmented

scan and barrier synchronization requires collective com-
munication models.

• In a distributed shared-memory paradigm, multicast ser-
vices may be used to efficiently support shared-data
invalidation and updating.

Some NoC-based chip multiprocessors such as RAW ma-
chine from MIT [2], Tile64 processor from Tilera [3], Ter-
aflops from Intel [4] and TRIPS chip [5] have been recently
published. The RAW machine comprises 16 tiles, where each
computing resource tile is connected to programmable routers
in a 2D mesh 4x4 topology. The Tile64 processor architecture
consists of a 2D 8x8 grid of identical compute elements (tiles).
The Teraflops processor architecture contains 80 tiles arranged
in a 2D array and connected by a mesh 8x10 network. The
TRIPS prototype chip contains two data networks, an on-chip
network (OCN) and an operand network (OPN). The OPN
consists of two TRIPS processors and is connected to the OCN
comprising memory tiles in a 2x8 array structure.

Programming models of the parallel computing systems
can be divided into shared-memory, threads, message passing
and data parallel programming models. A hybrid parallel
programming model can be also developed by combining two
or more programming models, e.g. shared-memory model on
a distributed memory machine. Most of the multiprocessor
systems mentioned before are designed to support thread-level
(multithreads) parallelism, shared-memory and message pass-
ing programming models. The RAW processor compiler [6]
for instance uses the multithreaded program written in a high-
level programming language and map it onto RAW hardware.
While Tile64 is equiped with C-based interconnect library
[3] that provides programmers with a set of commonly used
communication primitive such as MPI-like message passing
interface for ad hoc messaging.

A framework for automatic parallelization has been in-
troduced in [7]. The aggressive automatic thread extraction
framework will let programmers achieve the performance of
parallel programming via a simpler sequential programming
model. The new era of parallel computation running on a
single chip multiprocessor systems is now coming and will be
a hot topic. The multicast delivery services whose benefits that
have been explored previously will be also an interesting issue
for integrating the parallel computing models on the NoC-
based multiprocessor systems.

II. RELATED WORKS AND MOTIVATIONS

Multicast messages can be routed in the network using path-
based [1], [8], [9] or tree-based [10], [11], [12] multicast

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 6

routing. However, the multicast networks presented in the
abovementioned works are not dedicated for single-chip net-
works. Indeed, the routing hardware units presented in those
works are very complex, and may also increase the logic area
after gate-level synthesis. In our NoCs, the adaptive routing
algorithms used to route unicast and multicast packets are the
same, resulting in a very efficient routing function gate-level
implementation.

The NoC presented in [13] has introduced the path-based
multicast routing to avoid multicast deadlock in the destination
nodes by reserving virtual channels and giving priority for
the multicast message over the unicast message on arbitration
of link bandwidth. Experiments in the work show that the
proposed multicast technique improves throughput, and does
not exhibit significant impact on unicast performance in a
network with mixed unicast-multicast traffic “only if” the
network is not saturated. Our proposed multicast scheduling
does not give priority for multicast messages (fair flit-by-flit
arbitration between the unicast and multicast messages). Our
multicast technique does not also present significant impact
on the unicast performance “even if” the network is saturated
because of the implementation of flit flow control at link-level.
Indeed, the NoC in [13] has not been synthesized into logic
gate level.

The NoC presented in [14] uses a time-space-time switch
designed for time-division-multiplexing (TDM-based) NoCs.
Slot map tables as central components are used as time slot
interchangers to directly control the read and write operation
to random access frame buffers. Unfortunately, although this
work has mentioned the feasibility of implementing the multi-
cast scheduling technique, a concrete multicasting procedure,
system-level or RTL-level simulations for measuring the NoC
performance over multimessage multicast traffics and the NoC
capability to handle the multicast deadlock problem are not
presented in the paper.

Æthereal NoC [15] and Nostrum [16] have used a time-
division-multiplexing approach in order to be able to support
the multicast services for further implementation in their NoC
architectures. However, experiments by analysing multicast
traffics and the NoCs performances over multicast deadlock
problem have not been released so far. As far as we know,
our NoC, which is called XHINoC (eXtendable Hierarchical
and Irregular NoC) is the first gate-level synthesizable NoC
supporting the multicast services. The XHINoC has proposed a
new approach for a deadlock-free tree-based multicast routing
that can be disjointed into various NoC topologies with
specific router microstructures. Hopefully, our investigation
under XHINoC infrastructure could make one step forward
on the integrated research synergy between on-chip multipro-
cessor (CMP) in NoC platforms (hardware-level) and parallel
computing (software-level) in the future.

III. TREE-BASED MULTICAST ROUTING

In the tree-based multicast routing, the header ordering in
source nodes is not required (the order of the destination
addresses can be freely determined). The multicast routing will
form communication paths like branches of trees connecting
the source node with the destination nodes at the end points of
the tree branches. A higher possibility that multicast deadlock
occurs in intermediate nodes has alleviated the intentions of

Fig. 1. The packet format for (a) unicast and (c) multicast, and (b) binary
encoding of the flit types.

the most of network designers to use this method. However,
we have introduced a new multicast scheduling for tree-
based multicast routing to solve effectively and efficiently the
multicast deadlock, which can change the intention of the
network designers.

A. Multicast Packet Format
The packet format used in our NoC is presented in Fig. 1.

Fig. 1(a) presents the packet format for unicast messages. The
39-bit packet consists of a header flit followed by payload flits.
The additional heads for each flit are 3-bit flit type and 4-bit
packet ID (Identity). The Type can be header, data body, and
the end of databody (last/tail flit) as shown in Fig. 1(b). Flits
belonging to the same message have the same local ID number
in a local queue, and vary over different communication
links to support scalable concept and wire-share flexibility.
Fig. 1(c) shows the packet format for multicast messages. The
m number of the embedded packet headers is the same as the
number of targeted m multicast destinations.

B. Routing and Multicasting Procedure
Routing engine (RE) units in our NoC consist of combina-

tion of a router hardware logic (RHL) unit and a routing look-
up table (LUT) unit. The combination is aimed at supporting
a runtime link interconnect configuration. If the RE units
identify a header flit in the output of a FIFO buffer, then the
RHL unit will find a routing direction based on destination
address stated in the header flit and current address of the
router, and assigns the routing direction in a register of the
LUT unit, and then index it based on its ID-tag. In the next
time periods, when the RE units identify payload flits with the
same ID-tag number with the previously forwarded header flit,
then their routing direction will be taken up directly from the
LUT unit in accordance with their ID-number indexed before.

There are three main steps to deliver a multicast message
into multi destination processing elements. Firstly, forwarding
all header flits for the multicast tree routing setup and ID-slot
reservation. Secondly, broadcasting the payload flits to follow
the path set up by the header flits. And the last, setting free the
reserved local ID-slot by the tail flit. As shown in Fig. 1(c),
each header represents one address of a multicast node.

C. ID-Based Multicast Scheduling
1) ID Slot Allocation: In our NoC, unicast and multicast

messages are multiplexed at each outgoing link based on an ID
slots allocation technique. As a counterpart of a Time-Division

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 7

Fig. 2. ID-tag slot allocation of tree-based multicast packet routing.

Multiplexing (TDM) technique, our ID-based Multiplexing
technique provides more flexible and optimistic solution for
scheduling unicast or multicast message in networks at run-
time. There is also no need for a global network view if the
link would be scheduled at design time.

Fig. 2 shows how ID-slots of each outgoing link are
allocated for each tree-branch of the multicast packets A, B
and C which are injected into the mesh 4x4 NoC topology. As
shown in the figure, each tree-branch of the multicast message
has different local ID-tag. The local ID-tags are updated over
the links by using an ID mapping management technique
as later explained in Subsections III-C.2 and III-C.3. Some
multicast messages have also contentions to access the same
outgoing links in the figure, in which multicast deadlocks are
performed. In order to overcome that problem, we introduce
a fair flit-by-flit hold-release scheduling policy as presented
later in Subsection III-C.5.

2) ID-Based Routing Organization: The ID-based schedul-
ing technique enables us to mix different flits of different
messages into the same queue and to perform a fair flit-by-
flit round arbitration to access outgoing ports. Fig. 3 presents
three messages (Messages A, B and C coming from EAST,
WEST and NORTH port, respectively) in the router node (2,3)
that are switched to the router node (2,2) through the same
SOUTH outgoing port. For the sake of simplicity, only routing
tables (LUT) of the routing engine (RE) units of the occupied
incoming ports are presented in the figure. Message A, B
and C have local ID-tag 3, 2 and 3, respectively. Hence, the
SOUTH routing direction are indexed and addressed in the
routing tables based on the ID-number.

An ID management (IDM) unit at the SOUTH outgoing link
as shown in Fig. 3 is used to update the local ID-tag of each
packet into a new ID-tag before entering the next downstream
router. Each new packet is allocated into a free ID slot and
indexed/mapped based on its old local ID-tag and from which

Fig. 3. ID-based routing and packet interleaving.

port it comes. As presented in the figure, Message A, B and
C are mapped into new local ID-tags 0, 1 and 2, respectively.
The following subsection will explain how the local ID-tag is
updated.

3) ID-Slot Updating and Management: Fig. 4 shows how
a packet header coming from NORTH port with ID-tag 3
which is just switched from crossbar switch is updated. The
ID update process is described into 4 steps. In the 1st step, the
IDM detects a new incoming packet header and then looks for
a free ID slot by checking the ID-state table. In this case, the
ID-tag 2 is free and then in the 2nd step, the ID is assigned as
the new ID-tag for the new packet. In the 3rd step, the ID-slot 2
is indexed based on the old local ID-tag 3 and NORTH data
from which it comes. Hence, every time a payload flit coming
from NORTH port with ID-tag 3 will have the new ID-tag 2.
In the 4th step, ID-tag 2 state is set from “free” to “used”, and
the number of used ID (UID) is incremented. When the UID
is the same as N number of available ID slots, then “empty
free ID flag” is set. When a tail flit (the end of databody) is
passing through the outgoing port, then the related ID-tag 2
state is set from “used” to “free”, the UID is decremented
and the information related to the tail flit ID-number is then
deleted from the ID Slot Table.

4) ID Slots Requirement: Our current implementation uses
4-bit ID field in each flit. Hence, a maximum number of 16
packets (24) can be in flight on the same link. The number of
available ID slots can be increased by increasing the number
of ID field bits as presented in the packet format, resulting in
an increase of the routing table size and ID slot table size in
the ID management unit. The number of required ID slots is
application-dependent and can not be increased anymore if the
NoC had been implemented on ASIC. Hence, an optimal post-
manufacture application mapping should be made, in order
to avoid that more than 16 packets interfere with each other
across the same link.

In coarse-grain multiprocessor applications, where com-
putation to communication ratio is high, it seems that 16
ID slots per channel are enough to run several applications.
But, if the computation to communication ratio is low (fine-

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 8

Fig. 4. ID-tag updating and mapping management.

grain), then the number of available ID slots per channel
must be strongly considered. The user must ensure that each
channel will not be burden with excessive communication
loads. Because, even when a channel were shared by 8 to
10 packets, the bandwidth requirements may be not satisfied
anymore, and the performance of the application may degrade
accordingly. The situation can be compared with a bus system
requested by 8 to 10 components simultaneously. Fortunately,
traffic behaviors in the context of embedded system-on-chip
and multiprocesor applications are predictable. Hence, it is
possible to map an application in NoC-platform in such a
way that all packets will be able to reserve ID slots to
perform requested communications with fulfilled bandwidth
requirements.

5) Hold-Release Multicast Fair Scheduling Policy: The
tree-based multicast routing is prone to deadlock. The dead-
lock occurs in a intermediate node when one or more outgoing
links are simultaneously requested by the same multicast
packets. Therefore, we propose a new methodology to handle
the multicast deadlock. Fig. 5 presents 6 Snapshots of the
proposed multicast scheduling method and a fair flit-by-flit
round arbitration of a so called hold-release multicast fair
scheduling policy for the deadlock handling mechanism.
• In Snapshot 1, three multicast packets, i.e A coming

from EAST, B from WEST and C from SOUTH ports
request different and the same outgoing links. NORTH
and WEST outgoing links are requested by Packets A
and C. The other outgoing links are only requested by
one Packet, i.e. EAST and SOUTH outgoing links are
requested by Packet B, and LOCAL link by Packet C.
The flits A10, B10 and C10 represent the flits with local
ID-tag 0.

• Although the outgoing links are requested by more than
one packet, one by one of the flits of all packets can be
granted as a winner to access the outgoing link at every
stage as shown in Snapshot 2. In this stage, we assume
that flit C1 is firstly selected to access the NORTH
outgoing link, while flit A1 is granted as the winner to
access the WEST outgoing link. The other outgoing links
i.e., EAST, SOUTH and LOCAL, select also their single

request from flits in the incoming port.
• In the next stage as presented in Snapshot 3, all granted

flits are accepted in the outgoing links. However, the
states of all flits in incoming are different and depend
on whether their multicast requests have been granted by
their required outgoing ports. For instance, all multicast
request of Packet B to access EAST and SOUTH ports
have been granted by these ports. Hence, flit B1 (with R
state) can be released from FIFO buffer in WEST inport
and its request is now replaced by the request of the new
incoming flit B2. But flits A1 and C1 (with H state)
must be still withheld in input buffers, because their other
requests (presented in dashed lines) to access another port
have not been granted in this stage. In this stage, all ID-
tags of the packets are mapped and updated with new
ID-tag 0.

• In the next stage as shown in Snapshot 4, by using
the flit-by-flit round arbitration method, NORTH and
WEST outgoing arbiters change now their selection to
other flits, which also request the ports. NORTH port
selects now flit A1, while WEST port selects flit C1.
EAST and SOUTH outgoing ports select again the flit
coming from WEST incoming port (i.e. flit B2), because
these ports are only requested by Packet B from WEST
incoming port. But the LOCAL outgoing port will not
grant again flit C1, because flit C1 has been granted in
the previous stage. This decision is made to avoid flit C1
being transferred two times into the LOCAL outgoing
port (avoiding improper multicast replication).

• In the next stage as presented in Snapshot 5, flits A1, B2
and C1 are transferred to the outgoing links, and can be
released from EAST, WEST and SOUTH input buffers
(with R state) respectively, because their multiple requests
have been granted previously step by step in Snapshot
2 and Snapshot 4. Their request are now replaced by
the requests of new incoming flits i.e., flits A2, B3 and
C2. Because ID-tag 0 has been used by packet C in the
NORTH and by packet A in the WEST outgoing links,
then packet A in the NORTH and packet C in the WEST
outgoing links are assigned with new local ID-tags 1 (A11

and C11).
• Snapshot 6 shows generally the same mechanism with

the situation shown in Snapshot 2.
6) Link-Level and Dynamic Injection Rate Control: Be-

cause of using a wormhole packet switching, our NoC is
equipped with control mechanisms for flit flow at link-level
and dynamic injection rate. Before contentions of the mes-
sages to acquire the same communication channels occur, the
messages are always injected from the source nodes with a
maximum injection rate. The maximum injection rate is in
accordance with the allowed maximum data frequency. When
the contention occurs, then the FIFO queues in incoming
ports occupied by the contenting messages will be congested
(full). The congestion (full condition) signals are then traced
back to the upstream nodes, and soon or later, the congestion
signals will attain the source nodes. By using “request-grant”
methodology, in which an Injection State Controller (ISC) unit
in the on-chip network interface will not give an acknowledge
signal to inject a new flit into a FIFO queue in a LOCAL
port of the on-chip router until one space register of the

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 9

Fig. 5. Hold and Release Multicast Scheduling.

queue is free, then the injection rates at the source nodes
can be controlled automatically and dynamically. The same
mechanism is applied at link-level (inter-router data transfer),
where a Link State Controller (LSC) unit (as later depicted in
Fig. 8) will control the flit transfer from outgoing port to the
next downstream FIFO through a communication channel.

IV. ON-CHIP ROUTER MICROARCHITECTURE

A. 2-D Mesh Planar Topology
Fig. 6 presents an example of the 2-D mesh planar 4x4

network. The network is physically divided into two sub-
networks i.e., X+ (depicted in solid line arrows) and X−
subnetworks (depicted in dashed line arrows). If the x-distance
between source and target nodes (xoffs = xtarget − xsource)
is zero or positive, then packets will be routed through the
physical channels of the X+ subnetwork. If xoffs is zero or
negative, then the packets will be routed through the physical
channels of the X− subnetwork. We can assume that the
ports connected with vertical links of X+ and X− subnet-
works are denoted by (North1, South1) and (North2, South2)
ports, respectively. Hence, the packets routed through the X+
subnetwork will have adaptivity to make West–North1, West–
South1, North1–East and South1–East turns as well as West–
East, North1–South1 and South1–North1 non-turn routing.
While the packets routed through the X− subnetwork will
have adaptivity to make East–North2, East–South2, North2–
West and South2–West turns as well as East–West, North2–
South2 and South2–North2 non-turn routing directions.

The planar adaptive routing on a mesh topology is firstly
introduced in [17] and deadlock-free. Instead of using virtual
channels to implements the link interconnect between NORTH
and SOUTH port as made in [17], we prefer to implement
two physical channels to separate the NORTH–SOUTH link
interconnects for X+ and X− subnetworks. The objectives
of this approach are to maintain the router performance and
to increase the network bandwidth capacity. If the virtual
channels are implemented in the NORTH and SOUTH ports,
then we need to add two virtual queues at both incoming and

Fig. 6. 2-D Mesh Planar Topology.

Fig. 7. Switch/Router Structure. (a) Mesh with Static XY routing, (b) Mesh
Planar with Adaptive Routing.

outgoing ports. Rather than using such virtual queues, which
can degrade router performance characteristic or increase data
transfer latency, we substitute them by adding two additional
ports (NORTH2 and SOUTH2 ports) in the existing mesh
router as presented in Fig. 7(b). In this approach, the number of
additional queues is similar to the virtual channel implemen-
tation but it maintains the router performance. Nevertheless,
the number of input-output pins is certainly increased.

B. Generic Modules and Modular-Based Design
Fig. 7 shows the switch structures for networks with stan-

dard mesh and mesh planar topology. In the mesh standard,
the EAST, NORTH, WEST, SOUTH and LOCAL ports are
represented by port numbers 1, 2, 3, 4 and 5, respectively.
While in the mesh planar, the EAST, NORTH 1, WEST,
SOUTH 1, NORTH 2, and SOUTH 2 and LOCAL ports are
represented by port numbers 1, 2, 3, 4, 5, 6 and 7, respectively.
The numerical numbers in the crossbar area represents the
connectivity between links from the incoming ports to the
outgoing multiplexors.

The XHINoC router microarchitecture is developed based
on modular units and is grouped into incoming block and
outgoing block components. Each module contains generic
codes, which are strongly related to the number of input-output
connectivities of each port. Fig. 8 shows the incoming and
outgoing components in the Port 2 (NORTH 1 port) of the
mesh planar router for instance. In the incoming block, we
need 3-input GMC (Grant-Multicasting Controller) and RDec

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 10

Fig. 8. Components in Port 2 (NORTH 1 Port).

(Request Decoder), because the data coming from Port 2 is
only connected to outgoing Port 1, 4 and 7. The GMC itself is
an important unit to control the multicast flit release from the
FIFO buffer. In the outgoing block, we need 3-input Arb (Ar-
biter), RFC (Request-Feedback Controller), WDec (Winner-
out-Decoder) and 3-input outgoing multiplexor, because the
data going out to Port 2 are from incoming Port 3, 4 and 7.
The RFC unit is used to control multicast requests for avoiding
improper multicast flit replications.

The design of the XHINoC routers are fully customized on
demand. However, each VHDL entity contains generic codes,
which enable us to derive a new VHDL module with different
behavioral architecture and the number of input/output pins
according to the specification. The custom-generic modular-
based design approach enables us to develop easily irregular
NoC topologies.

C. Routing Algorithms

In this paper, we will evaluate our proposed mesh topologies
by using four mesh prototypes with different routing algo-
rithms. The first prototype (mesh XY) uses a static XY routing
algorithm in the standard mesh topology (using a router as
in Fig. 7(a)). The remaining three prototypes use 2-D planar
adaptive routing algorithms in the mesh planar topology (using
router as in Fig. 7(b)). In the second prototype (mesh PA XP),
packets from the LOCAL port that can be routed adaptively to
horizontal or vertical direction will be prioritized to select the
horizontal direction, while in the third and fourth prototypes
(mesh PA YP and PA ZZ), the packets from the LOCAL port
will be prioritized to select the vertical direction. However, in
the second and the third prototypes, the packets prefer to make
non-turn routing direction from any port (except from LOCAL
port) if the packets can be routed adaptively to horizontal or
vertical direction. While in the fourth prototype, packet will
make a zig-zag routing selection. The impact of such routing
algorithms over the NoC performance will be explored in
Section V as follows.

V. EXPERIMENTAL RESULTS

A. Selected Traffic Scenario

Fig. 9 exhibits the traffic pattern used to verify our proposed
scheduling methodology and algorithms. Although the traffic
pattern does not represent an example of a real application,
we are sure that the scenario can be accepted as one of

Fig. 9. The selected traffic scenario.

among our best-case scenario to verify our methodology. This
pattern performs some multi deadlock configurations because
of contentions of some multicast messages to acquire the same
outgoing links. Synthesized and randomly selected source and
target nodes are mixed in the traffic in such as a way that
multicast conflicts occur in the NoC.

Eight multicast messages (denoted with Sn in Fig. 9) are
injected to the NoC at the same time and is replicated,
broadcasted and flows in the networks. Each message has six
multicast destination (Tn.m symbols denote the target node
m of a multicast message injected from source node Sn).
As described in Subsection III-C.6, the messages are firstly
injected with a maximum injection rate. The injection rate is
then decreased and increased automatically and dynamically
depending on the existing contention in the NoC routers.
The more multicast messages are involved in a contention to
acquire the same outgoing channel in a certain router node, the
smaller the injection rates of the involved multicast message
will be.

In each Sn node, 2048 flits are injected, resulting in a total
number of 16384 (8 × 2048) flits are injected to the source
nodes, and a total number of 98064 flits are ejected from
the multicast destination nodes. Each message injected from a
certain node is encoded to recognized it from other multicast
messages. Every flit is numbered in-order to enables us to
check the flits one-by-one in our testbench program, whether
any flit looses or is replicated improperly in the network or is
accepted out-of-order in the destination nodes.

B. Performance Measurement Result

The experiment result has also proved, that all flits of the
messages are accepted in-order (the same order as in injection
nodes). The out-of-order problem has been successfully han-
dled because of the packet choice and the working organization
between router hardware logic and routing look-up table units
at each incoming port and the IDM units at each outgoing (See
again Fig. 3). Each message is associated as a single packet
(even if the message size is extremely large, a stream data for
instance) with one header flit for each destination nodes. A

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 11

routing decision (statically or adaptively) in each router node
will be made once by the header flit, then all payload flits will
just follow the path set up by the header flit. It means that the
message will “not be divided” into several packets. Hence, the
out-of-order problem will not appear in our NoCs.

The experiment has also exhibited that there is no improper
flit replication. It resumes that our “hold-release” scheduling
policy has successfully control and manage the existing mul-
ticast conflicts at each intermediate node. Table I shows the
measurement of the tail flit (the end of payload flit) acceptance
latency. The table reports the transfer latencies to accept
the tail flits in target nodes Tn.m of each message injected
from Sn node. The transfer latency is measured based on the
number of clock cycle periods to transfer tail flits (the end
of packet/message bodies) starting from injection nodes until
ejection (destination) nodes.

The RTL-simulations are run with similar clock periods to
evaluate all NoC prototypes. As explained in Subsection III-
C.6, all multicast messages are injected at the first-time with a
maximum injection rate. The injection rate at each source node
can change then dynamically and automatically due to the
contention of the message injected from the source node with
other messages to shares the requested channels. Therefore,
transfer latency of the tail flit of the message will increase
because of the reduced injection rate. The maximum tail flits
transfer latencies of the multicast messages injected from Sn
are then reported in Fig. 10. The figures shows that the PA
YP prototype (See also Subsection IV-C) exhibits the best
performance over the other prototypes.

Generally, the mesh planar (PA XP, PA YP and PA ZZ)
prototypes give better performance than the mesh XY pro-
totype specifically in this scenario, because the mesh planar
prototypes have higher bandwidht capacity in the double
vertical links connecting the NORTH and SOUTH ports. The
mesh planar PA YP presents also the best performance in this
scenario, because routing multicast packets firstly to vertical
direction will reduce the possibility of multicast contentions
to occur. The general result of this measurement is only
valid in this scenario. When the traffic is low or medium
high, the planar adaptive routing algorithms give always better
performance. In a certain traffic pattern (especially if the traffic
is very high), the performance of the static tree-based multicast
is often better than the planar adaptive multicast routing.
However, one general result that satisfies our expectation is,
that the multicast deadlock configuration can be successfully
tackled regardless of the multicast routing algorithm choice.

VI. SYNTHESIS RESULTS

Our router prototypes have been synthesized using CMOS
130-nm and 180-nm standard-cell libraries from UMC (United
Microelectronics Corporation). Table II presents the synthesis
reports of the number of consumed logic cells and estimated
logic cell area for standard multicast mesh router using static
XY routing algorithm and extended multicast mesh router us-
ing planar adaptive routing algorithm with Y-direction adaptive
priority (PA YP prototype). It looks that the cell area overheads
to synthesis mesh PA YP prototype over mesh XY prototype
are 47% and 49% using 130-nm and 180-nm UMC technology
respectively. The significant area overheads are due to the use

TABLE I
TAIL FLITS ACCEPTANCE LATENCY MEASUREMENT

Target Tn.m

Sn Alg. Tn.1 Tn.2 Tn.3 Tn.4 Tn.5 Tn.6

S1

XY 14318 14334 14320 14322 14318 14314
PA XP 12264 12272 12276 12272 12264 12268
PA YP 9538 9556 9546 9554 9538 9540
PA ZZ 12274 12278 12282 12280 12270 12274

S2

XY 14322 14326 14326 14336 14320 14320
PA XP 12270 12266 12276 12292 12270 12272
PA YP 9546 9548 9546 9556 9544 9540
PA ZZ 12264 12272 12264 12274 12262 12258

S3

XY 14332 14332 14320 14320 14324 14330
PA XP 16360 16360 16352 16352 16352 16358
PA YP 9548 9554 9540 9546 9542 9546
PA ZZ 12278 12276 12274 12270 12266 12266

S4

XY 18402 18398 18404 18392 18390 18396
PA XP 18400 18396 18402 18390 18388 18394
PA YP 9556 9556 9556 9546 9544 9548
PA ZZ 12278 12278 12278 12266 12266 12270

S5

XY 14320 14304 14342 14344 14348 14350
PA XP 8190 8180 8210 8210 8216 8210
PA YP 12272 12256 12272 12272 12292 12292
PA ZZ 12274 12242 12260 12260 12290 12294

S6

XY 14322 14320 14360 14358 14340 14348
PA XP 8186 8182 8216 8212 8198 8202
PA YP 12270 12266 12290 12286 12278 12284
PA ZZ 12270 12266 12300 12296 12278 12286

S7

XY 14300 14322 14340 14348 14348 14344
PA XP 12260 12280 12292 12302 12302 12294
PA YP 8176 8202 8206 8214 8218 8196
PA ZZ 8176 8184 8206 8214 8200 8192

S8

XY 18402 18386 18422 18414 18422 18422
PA XP 18400 18384 18420 18412 18420 18420
PA YP 8196 8188 8220 8198 8216 8216
PA ZZ 8196 8170 8194 8186 8216 8216

Fig. 10. The maximum tail flit transfer latency per multicast message.

of adaptive routing mechanism and extra I/O ports in the mesh
planar adaptive router microarchitecture.

Fig. 11 presents the circuit layout of the mesh planar PA YP
prototype using Cadence Silicon Encounter tool. The cell area
of the IDM units are highlighted in the figure with bright color.
In the future, the power dissipations of the NoCs over various
traffic scenarios will be analyzed. In our previous investigation
[18], we have evaluated that the area overhead to update the
NoC from unicast to multicast with 8-register buffer size and
the same static XY routing algorithm and the same standard
mesh router is only about 15%.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 12

TABLE II
SYNTHESIS RESULT

Mesh Router Type Mesh MC XY Mesh MC PA YP

UMC CMOS techn. 130-nm 180-nm 130-nm 180-nm

Num. of cells 7607 7418 11104 11038

Num. of nets 7855 7757 11444 11460

Total cell area (mm2) 0.107 0.187 0.157 0.278

Num. of ports (pin) 420 420 584 584

Fig. 11. Automatic place and route of the multicast mesh router PA YP
prototype using 180-nm standard-cell library from UMC.

VII. CONCLUSION

The novel scheduling mechanism for tree-based multicast
routing using deadlock-free static and partially planar adaptive
routing algorithms has successfully solved the multicast dead-
lock configuration problem in the intermediate nodes of the
NoC. By using the hold-release scheduling rule and the ability
of the on-chip router to interleave flits of different messages
in the same queue, the multicast deadlock problem can be
solved easily. The methodology can also guarantee lossless flit
acceptance in multiple destination nodes even if the size of the
multicast messages is very long (e.g., a streaming data in video
application). There is also no out-of-order delivery problem,
even if the adaptive routing algorithms are used because of the
packet format choice and the dedicated working organization
of the combined router hardware logic and routing look-up
table units.

In general, our proposed NoC prototypes with planar adap-
tive routing algorithm can give better performance using a
certain test traffic scenario because of the higher bandwidth
capacity of the NoC in double vertical links connecting
NORTH and SOUTH ports. Nevertheless, this performance
gain must be paid by logic area overhead to implement the
mesh planar router architecture.

The development of low-level message passing and dis-
tributed shared-memory programming models for a multipro-
cessor system under XHINoC platform is now in progress.
Some open core MIPS processors are connected to XHINoC
routers via a customized network-interface. We can now
involve multicast instructions at higher protocol layer, because
the multicast service has been implemented in the network
and data-link layers. In the future, we will also develop
a heterogeneous NoC-based system by integrating some IP
components and open embedded processor cores to evaluate
the efficiency of the multicast communication for certain
applications.

REFERENCES

[1] X. Lin, P. K. McKinley and L. M. Ni, “Deadlock-Free Multicast
Wormhole Routing in 2-D Mesh Multicomputers,” IEEE Trans. on
Parallel and Distributed Systems, vol. 5, no. 8, pp. 793–804, Aug. 1994.

[2] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, et. al., “The Raw Microprocessor: A Computational Fabric
for Software Circuits and General-Purpose Programs,” IEEE Micro,
vol. 22, issue 2, pp. 25–35, Mar/Apr. 2002.

[3] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, et. al., “On-Chip Interconnection Architecture of the Tile
Processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep/Oct. 2007.

[4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar and S. Borkar, “A 5-GHz
Mesh Interconnects for A Teraflops Processor,” IEEE Micro, vol. 27,
no. 5, pp. 51–61, Sep/Oct. 2007.

[5] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar,
S. W. Keckler and D. Burger, “On-Chip Interconnection Networks of
the TRIPS Chip,” IEEE Micro, vol. 27, no. 5, pp. 41–50, Sep/Oct. 2007.

[6] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, et. al., “Baring it All to Software: Raw Machines,”
Computer, vol. 30, issue 9, pp. 86–93, Sep. 1997.

[7] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin and D. I. August,
“Revisiting the Sequential Programming Model for the Multicore Era,”
IEEE Micro, vol. 28, no. 1, pp. 12–20, Jan/Feb. 2008.

[8] J. Duato, “A Theory of Deadlock-Free Adaptive Multicast Routing in
Wormhole Networks,” IEEE Trans. on Parallel and Distributed Systems,
vol. 6, no. 9, pp. 976–987, Sep. 1995.

[9] R. V. Boppana, S. Chalasani and C. S. Raghavendra, “Resource Dead-
locks and Performance of Wormhole Multicast Routing Algorithms,”
IEEE Trans. on Parallel and Distributed Systems, vol. 9, no. 6, pp. 535–
549, June 1998.

[10] M. Barnett, D. G. Payne, R. A van de Geijn and J. Watts, “Broad-
casting on Meshes with Worm-Hole Routing,” Journal of Parallel and
Distributed Computing, vol. 35, no. 2, pp. 111–122, 1996.

[11] M. P. Malumbres, J. Duato and J. Torrelas, “An Efficient Implementa-
tion of Tree-Based Multicast Routing for Distributed Shared-Memory
Multiprocessors,” in Proc. of the 8th IEEE Symposium on Parallel and
Distributed Processing, pp. 186–189, 1996.

[12] D. R. Kumar, W. A. Najjar and P. K. Srimani, “A New Adaptive
Hardware Tree-Based Multicast Routing in K-Ary N-Cubes,” IEEE
Trans. on Computers, vol. 50, no. 7, pp. 647–659, July 2001.

[13] Z. Lu, B. Yi and A. Jantsch, “Connection-oriented Multicasting in
Wormhole-switched Network-on-Chip,” Proc. IEEE Comp. Society An-
nual Symposium on VLSI (ISVLSI’06), 6 pp., 2006.

[14] J. Liu, L.-R. Zheng and H. Tenhunen, “Interconnect intellectual property
for Network-on-Chip (NoC),” Journal of Systems Architecture, vol. 50,
issue 2–3, Feb. 2004, pp. 65–79.

[15] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerber-
gen, P. Wielage and E. Waterlander, “Trade-offs in the design of a router
with both guaranteed and best-effort services for networks on chip,” IEE
Proc. Computers and Digital Techniques, vol. 150, no. 5, pp. 294-302,
Sep. 2003.

[16] M. Millberg, E. Nilsson, R. Thid and A. Jantsch, “Guaranteed Bandwidth
using Looped Containers in Temporally Disjoint Networks within the
Nostrum Network on Chip,” Proc. Design, Automation and Test in
Europe Conf. and Exhibition (DATE’04), pp. 890–895, 2004.

[17] A. A. Chien and J. H. Kim, “Planar Adaptive Routing: Low-Cost
Adaptive Networks for Multiprocessors”, in Proc. of the 19th Int’l Symp.
on Computer Architecture, pp. 268–277, May 1992.

[18] F. A. Samman, T. Hollstein and M. Glesner, “Multicast Parallel Pipeline
Router Architecture for Network-on-Chip,” in Proc. Design, Automation
and Test in Europe Conf. and Exhibition (DATE’08), pp. 1396–1401,
March, 2008.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 13

DMesh: a Diagonally-Linked Mesh Network-on-Chip
Architecture

Wen-Hsiang Hu, Seung Eun Lee, and Nader Bagherzadeh
Department of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, CA 92697 USA

{wenhsiah, seunglee, nader} @uci.edu

Abstract— In this paper, we propose a new mesh-typed NoC
architecture which aims at enhancing network performance
while keeping implementation cost feasible. The result is a
diagonally-linked mesh (DMesh) NoC that uses wormhole packet
switching technique. Together with the proposed adaptive quasi-
minimal routing algorithm, DMesh improves average latency
and saturation traffic load. In addition, logic synthesis results
show that adding diagonal links is a more area-efficient way for
increasing network performance than using large buffers.

I. INTRODUCTION
As semiconductor technology continues its phenomenal

growth and follows the Moore’s Law, the amount of
computation power and storage that can be integrated on a chip
increases. There have been previous articles reporting a single
chip that incorporated 64 cores [1] and another one with 80
cores [2]. While the computation logic grows, the
performance of on-chip interconnections does not scale as well.
Starting with 0.25μm CMOS technology, wire delay
dominates gate delay and the gap between wire delay and gate
delay becomes wider as process technology improves. In
addition, human design productivity can not keep up with the
growth rate of available circuits on a single chip. These issues
call for a well-structured design approach, modularized design
methodology, clear programming model and predictable
behavior of the system [5]. There is a need for a new on-chip
interconnection architecture to solve these design challenges.

Network-on-chip (NoC) interconnection scheme is
proposed as a unified solution for the design problems faced in
advanced process technology [3][4]. With NoC, we can apply
wire segmentation and wire sharing design techniques to
resolve the performance bottleneck due to wire delay. NoC
uses a distributed control mechanism, resulting in a scalable
interconnection network. The use of standardized sockets
enables modular design and intellectual property (IP) reuse and
the system predictability can be obtained by using guaranteed
service provided by NoC. Therefore, there is growing interest
in NoC research [5][6] and NoC is considered as a practical
approach for the next-generation on-chip interconnection.

We have recently developed a multi-processor system
platform called Network-based Processor Array (NePA) [7] in
which the processors are interconnected by using an on-chip

two-dimensional (2D) mesh network. The NePA NoC is a
deadlock-free and livelock-free network that implements the
wormhole packet switching technique and utilizes an adaptive
minimal routing algorithm. To further improve the
performance of NePA NoC, we propose in this paper to add
diagonal links to the 2D mesh network, because of the
emergence of X-architecture routing technique in chip
manufacturing [8][9]. The diagonal links not only reduce the
distance between a source node and a destination node but
alleviate traffic congestion in the network so that the network
performance is enhanced. Our proposed NoC architecture is
referred to as DMesh: Diagonally-linked Mesh. Simulation
results from self-similar traffic show that DMesh improves the
average latency and the saturation traffic load on both 4x4 and
8x8 mesh networks. In addition, logic synthesis results in
TSMC 65nm CMOS process show that adding diagonal links
is a more area-efficient way to improve network performance
than increasing buffer size.

The rest of this paper is organized as follows: Section 2
presents the background knowledge of NoC architecture and
related researches. The proposed DMesh NoC architecture is
discussed in Section 3. Section 4 presents experimental results.
Finally, brief statements conclude this paper in the last section.

II. BACKGROUND
In this section, we discuss the background of NoC

architecture and provide a review of some related works in this
field, as well as an overview of the NePA platform.

A. NOC Architecture
The function of an on-chip network is to deliver messages

from source node to destination node and there exist many
design alternatives to accomplish this job. Depending on the
application requirements, how to choose suitable network
architecture remains an open problem in this field of research.
Here we discuss the network properties that need to be
considered when devising an NoC architecture for specific
application needs.

1) Switching policy
There are two major switching techniques: circuit

switching and packet switching. Circuit switching establishes
a link between source node and destination node either

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 14

virtually or physically before a message is being transferred.
The link is held until all the data is transmitted. The major
advantages of circuit switching are that there is no contention
delay during message transmission and its behavior is more
predictable, so circuit switching is usually employed when
Quality of Service (QoS) is considered. Examples of using
this technique are [15] and [16].

On the other hand, packet switching transfers messages on
a per-hop basis. With packet switching, messages are divided
into packets at the source node and then sent into a network.
Packets move along a route determined by the routing
algorithm and traverse through a series of network nodes and
finally arrive at the destination node. Packet switching is
utilized in most of NoCs because of its potential for providing
simultaneous data communication between many source-
destination pairs. Readers are referred to [6] for a list of NoCs
utilizing packet switching techniques. Packet switching can be
further classified into three classes: store and forward (SAF),
virtual cut through (VCT), and wormhole switching. The most
popular one for NoC based architectures is wormhole
switching because it only requires a buffer size of one flit
(flow control unit) so that the area cost of a router can be kept
low. In contrast, SAF and VCT require a buffer size of the
whole packet which prohibits their adoption.

2) Topology
Topology defines how nodes are placed and connected,

affecting the bandwidth and latency of a network. Many
different topologies have been proposed, [6], such as mesh,
torus, binary tree, Octagon, mixed and custom topology, as
shown in Fig. 1. Some researchers have proposed the
application-specific topology that can offer superior
performance while minimizing area and energy consumption
[17][18]. The most common topologies are 2D mesh and torus
due to their grid-type shapes and regular structure which are
the most appropriate for the two dimensional layout on a chip.

Figure 1. NoC topologies.

3) Routing
Routing is the mechanism responsible for determining the

path that a packet traverses from the source node to the
destination node. Routing algorithms such as deterministic
and adaptive ones have been proposed. With deterministic
routing, the path between source-destination pair is fixed,
regardless of the current state of the network. On the other
hand, an adaptive routing algorithm takes the network state
into account when deciding a route, resulting in variation of
the routing path with time. For example, it may choose an

alternative path if a certain link is congested, therefore, an
adaptive routing algorithm has the potential of supporting
more traffic for the same network topology. However, most of
the proposed packet-switched NoCs use deterministic routing
because of its simplicity and the low area overhead in router
design.

B. NePA
We provide an overview of the NePA architecture in this

section. NePA implements the wormhole packet switching
technique and the topology of NePA is based on a 2D mesh as
shown in Fig. 2. Each node in NePA consists of a router and a
local IP which can be a CPU, DSP, memory block, or
application-specific logic. The router connects with its four
neighboring routers via six bidirectional links. A key feature
of the NePA architecture is the use of two separate vertical
links which are employed to construct a deadlock-free network
[19]. The NePA network is actually composed of two disjoint
sub-networks. One sub-network is responsible for delivering
east-bounded packets while the other one is for west-bounded
packets. Therefore, cycles in the resource dependence graph
[14] and prevent deadlocks from happening. This design
technique reduces the design complexity of the router because
there is no need for a deadlock aware routing algorithm. To
increase network performance, NePA utilizes an adaptive XY
routing algorithm. When an output port is congested, or the
output buffer is full, the router selects an alternative output
port for packets. Therefore, the link utilization is balanced and
network performance improves.

Figure 2. A 4x4 NePA network and its node composition.

III. DMesh ARCHITECTURE

A. Topology
The DMesh network is constructed by integrating diagonal

links to NePA, as presented in Fig. 3. Each node has 10 64-bit
bidirectional links connecting with its neighbors so the DMesh
router has 10 output ports (N1/N2/S1/S2/E/W/NE/NW/SE/SW-
out) and 10 input ports (N1/N2/S1/S2/E/W/NE/NW/SE/SW-in).
Additionally, there are three ports for connection with local
PEs: IntR, IntL and Int. Fig. 4 depicts the input and output
ports of NePA router and DMesh router. The DMesh network
is composed of two sub-networks: E-subnet and W-subnet,
represented in dashed arrows and solid arrows in Fig. 3,
respectively. The E-subnet is responsible for transferring

Mesh Torus Binary tree

Octagon Mixed Custom

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 15

Figure 3. Topology and links of DMesh.

(a) NePA router (b) DMesh router

Figure 4. Ports of NePA router and DMesh router.

packets eastward while the W-subnet is for transmitting
westward traffic. When source PE starts packet transmission, it
injects packets into the network via IntR or IntL port,
depending on the direction of destination PE. The IntR port is
in charge of injecting packets into the E-subnet and the IntL
port is for the W-subnet. Then the packets traverse in one of
the sub-networks to their destinations. When packets arrive at
the destination node, they are ejected from the Int port.

B. Packet format
With wormhole packet switching, DMesh packets are

composed of 64-bit flits. We utilized the same packet format
defined for NePA in [19]. There are four types of packets
defined. The single data transfer packet consists of one flit and
is used for transferring 32-bit data. The single command
packet is for building control specific protocols between
processor elements (PEs) or between a PE and a router.

DMesh also supports multiple data packets, which are used
for transmitting more than one 32-bit words at a time, because
multiple data transmission has better performance in terms of
communication overhead than the single data transmission.
Two different block transfers are defined. One is block
program transfer packet which is used for programming each
PE. The other is block data transfer packet used for
transferring multiple data words between PEs. The block
program/data transfer packet consists of a header flit and a
series of body flits which contains the actual program/data to
be transmitted. The number of body flits is encoded in the
header flit.

The address of destination PE is represented in the X-dir
field and Y-dir field in a relative distance format. For instance,
if the destination node is on the east side of the source node the

X-dir field has a positive value. The X-dir field has a negative
value if the destination node is on the west side of the source
node. This technique of relative address representation helps
reduce router design effort because a same router can be
applied to all network nodes without any modification. We
also incorporated the seq_num field in the packet for
reordering out-of-order delivery. The single/block data transfer
packet has the sourcePE_address field and the application-
dependent data_ID field in order for the destination PE to
identify received data.

C. Routing
We devised a distributed adaptive routing algorithm for

DMesh. With distributed routing, the selection of the next hop
is decided at the current node and the path selection is based
on a quasi-minimal routing technique. Take Fig. 5 for example,
if there is a packet being transferred from node S to node D,
there are three alternative paths: a, b, and c. Clearly, path a is
the shortest path. However, from our preliminary simulation,
if a minimal routing algorithm is adopted and we always
choose the shortest path there will be severe congestion on
diagonal links and low utilization on vertical and horizontal
links. Thus, the network performance is impacted. Our quasi-
minimal routing relaxes the output port selection. In this
example, it allows packets to take path b or path c depending
on the network state, if path a is congested. Although the
packet may traverse a longer path, this approach helps balance
link load and relieve congestion. In order to solve contention
at an output port, we employed a fixed-priority scheme for
arbitration. In general, the diagonal input ports are given the
highest priority, then the horizontal and vertical input ports,
and IntR and IntL have the lowest priority.

S

D

a

(a) Minimal routing (b) Our approach

Figure 5. Example of route selection

IV. PERFORMANCE AND COST EVALUATION
Here we describe the methodology used to analyze the

performance and area cost of DMesh architecture and present
the results.

A. Performance evaluation
To evaluate DMesh performance and compare it with

NePA, we constructed a SystemC based cycle accurate
simulator called eNoC. In eNoC, we can change various
network configurations, such as network size, topology, buffer
size, routing algorithm, priority scheme for router arbitration,
and traffic pattern. There are four different traffic patterns
used for measuring the performance: uniform random, bit
complement, bit reverse and matrix transpose traffic patterns.
These patterns define the spatial distribution of packets.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 16

As for the temporal distribution of packets, we adopted the
self-similar traffic generation techniques. Self-similar traffic
has been found in the traffic between on-chip modules in
MPEG-2 video applications [10] and conventional computer
networks [11]. Researchers [12] have shown that self-similar
traffic can be generated by aggregating a large number of
packet sources which exhibit a long-range dependence
property. We used the modeling method proposed in [13] to
produce the self-similar traffic. During simulation, each
source node is either in the ON or OFF state. A source node
generates packets when it is in the ON state and it does not
generate any packets when in the OFF state. The length of
time a node spends in the ON or OFF states is determined by
the Pareto distribution (F(x) = 1 – x-α, 1<α<2). The equations
for calculating ON and OFF times are

ONUTON
α1−= (1)

OFFUTOFF
α1−= (2)

U is a uniformly distributed value in the range of (0, 1], αON =
1.9 and αOFF = 1.25.

We used a standard interconnection network measurement
setup described in [14]. After a packet is generated, it is stored
in an infinite queue at the source node and waits for being
injected into the network. This mechanism referred to as the
open-loop measurement configuration isolates the packet
generation from the network behavior, i.e. the packet
generation is independent of the network condition. Each
simulation executes 10,000 clock cycles for warm-up and then
continues for 100,000 cycles during which performance
measurements are conducted.

Two performance metrics are of importance to us: latency
and throughput. In order to compute latency information, each
flit in eNoC is declared as a SystemC object that carries four
latency related private variables: generation time (Tg), injection
time (Ti), arrival time (Ta) and inter-node distance (D). Inter-
node distance is represented in terms of the number of hops
between source-destination pairs. With this information, the
latency, queuing delay, and blocking time of each flit can be
calculated by the following equations:

Latency = Ta – Tg (3)

Queuing delay = Ti – Tg (4)

Blocking time = Ta – Ti – (D * clock cycle time) (5)

The average inter-node distance is shown in Table I. We
can see that our routing algorithm makes efficient use of
diagonal links so that the inter-node distance is reduced in all
traffic patterns. Matrix transpose traffic has the largest
improvement and makes the most of the diagonal links
because the source-destination pairs are all symmetric to the
diagonal in a matrix.

The comparison of average latency in 4x4 and 8x8
networks under four different traffic patterns is shown in Fig. 8.
In both 4x4 and 8x8 network size, DMesh outperforms NePA.
In particular, the 4x4 network under bit reverse and matrix
transpose traffic, the latency in DMesh is a constant because

the network is capable of resolving all routing resource
contentions. That is, each source-destination pair can obtain
an alternative path that is not occupied by other packets. In
Fig. 6, we compare the queuing delay, traverse latency, and
blocking time for 4x4 and 8x8 networks under random traffic.
For different traffic loads, all of these delays are decreased in
DMesh. The saturation load (the point where throughput no
longer grows linearly with traffic load) in various
configurations are summarized in Table III. It can be observed
that DMesh is able to sustain higher load than the NePA. For
random traffic, the improvement in the 8x8 network is more
than the 4x4 network which implies that DMesh has a greater
impact on systems with more nodes. From Table III, it can be
seen that the increase in FIFO sizes does not help much with
the saturation load.

B. Area cost and power consumption evaluation
In order to estimate hardware cost, we implemented the

NePA router, the DMesh router and the FIFO buffer in Verilog
and performed logic synthesis by using the Synopsys Design
Compiler to get gate count information. Various buffer sizes
were also evaluated. For the NePA router, we followed the
architecture described in [7]. The block diagram of DMesh
router is presented in Fig. 7. The DMesh router has three sub-
routers for processing traffic in the E-subnet, W-subnet and Int
output port. There is a FIFO associated with each input port.
Header processing unit (HPU) extracts destination information
from the header flit and routing logic (RL) is used to decide
routing path, perform arbitration and control the crossbar
switch.

We used TSMC 65nm CMOS generic process technology
in logic synthesis. The target clock rate is set to be 800 MHz
and is met in all configurations. The results are listed in Table
II. From the table, we can observe that the gate count and
power consumption of the DMesh router with a FIFO depth of
4/8 is roughly equal to or less than those of the NePA router
with a FIFO depth of 8/16. Performance comparisons of these
four configurations are shown in Fig. 9. It is clear that DMesh
has a shorter latency than NePA with similar hardware cost.
For example, for a 8x8 mesh in random traffic, DMesh with a
FIFO depth of 4 has a shorter latency than NePA with a FIFO
depth of 8 and 16. All other configurations have similar results.
Fig. 9 also shows that the improvements from diagonal links
are more than those from larger buffers. Therefore, DMesh is a
more area-efficient architecture.

TABLE I. COMPARISON OF AVERAGE INTER-NODE DISTANCE
4x4 network

Network Random Bit
complement

Bit reverse Matrix
transpose

NePA 2.38 4.33 3.32 3.38
DMesh 1.83 2.55 1.99 1.79

Reduction 23.1% 41.1% 40.0% 47.0%

8x8 network
Network Random Bit

complement
Bit reverse Matrix

transpose
NePA 4.89 9.75 6.19 7.33
DMesh 3.66 5.80 4.04 3.86

Reduction 25.1% 40.5% 34.7 47.3

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 17

0

10

20

30

0.1 NePA
0.1 DM

esh
0.2 NePA
0.2 DM

esh
0.3 NePA
0.3 DM

esh
0.4 NePA
0.4 DM

esh
0.5 NePA
0.5 DM

esh

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Transfer Latency Blocking Time Queuing Delay
(a) 4x4 mesh network

0

10

20

30

0.1 NePA
0.1 DM

esh
0.2 NePA
0.2 DM

esh
0.3 NePA
0.3 DM

esh
0.35 NePA
0.35 D

M
esh

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Transfer Latency Blocking Time Queuing Delay
(b) 8x8 mesh network

Figure 6. Comparison of various delays in random traffic

Figure 7. Block diagram of DMesh router.

TABLE II. GATE COUNT (EQUIVALENT 2-INPUT NAND GATE) OF NEPA
AND DMESH ROUTER NODE (FIFOS INCLUDED)

NePA DMesh FIFO
depth
(flits)

Gate
Count

Dynamic
Power (mW)

Gate Count Dynamic
Power
(mW)

2 18368 6.99 32750 11.53
4 28654 12.29 46598 20.40
8 47038 22.32 75382 36.88

16 85362 42.03 134479 69.45
32 163330 81.27 250559 134.36
64 316173 159.33 490820 261.95

V. CONCLUSION
We developed a novel DMesh NoC architecture and

demonstrated its performance enhancement over the previous
work. Hardware cost evaluation also shows that our approach
is more area-efficient than previously reported results. With
more links in the network, we anticipate that DMesh has the
potential of supporting better QoS and fault tolerance
capability.

REFERENCES
[1] S. Bell et al., "TILE64 Processor: A 64-Core SoC with Mesh

Interconnect," Solid-State Circuits Conference, 2008. Digest of
Technical Papers. IEEE International, pp. 88-598, 2008.

[2] S. Vangal et al., "An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS," Solid-State Circuits Conference, 2007. Digest of Technical
Papers. IEEE International, pp. 98-589, 2007.

[3] W. J. Dally and B. Towles, "Route packets, not wires: on-chip
interconnection networks," Design Automation Conference, 2001.
Proceedings, pp. 684-689, 2001.

[4] L. Benini and G. De Micheli, "Networks on chip: a new paradigm for
systems on chip design," Design, Automation and Test in Europe
Conference and Exhibition, 2002. Proceedings, pp. 418-419, 2002.

[5] T. Bjerregaard and S. Mahadevan, "A survey of research and practices
of Network-on-chip," ACM Computing Surveys, vol. 38, pp. 1, 2006.

[6] E. Salminen et al., "Survey of Network-on-Chip proposals," White
Paper, OCP-IP, March 2008.

[7] J. H. Bahn, S. E. Lee, Y. S. Yang, J. Yang and N. Bagherzadeh, "On
Design and Application Mapping of a Network-on-Chip(NoC)
Architecture," Parallel Processing Letters, vol. 18, pp. 239-255, 2008.

[8] M. Igarashi, T. Mitsuhashi, A. Le, S. Kazi, Y. T. Lin, A. Fujimura and S.
Teig, "A Diagonal-Interconnect Architecture and Its Application to
RISC Core Design," IEIC Technical Report (Institute of Electronics,
Information and Communication Engineers), vol. 102, pp. 19-23, 2002.

[9] S. L. Teig, "The X architecture: Not your father's diagonal wiring,"
Proceedings of the 2002 International Workshop on System-level
Interconnect Prediction, pp. 33-37. 2002.

[10] G. Varatkar and R. Marculescu, "Traffic analysis for on-chip networks
design of multimedia applications," in DAC '02: Proceedings of the 39th
Conference on Design Automation, 2002, pp. 795-800.

[11] W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, "On the
self-similar nature of Ethernet traffic (extended version)," Networking,
IEEE/ACM Transactions on, vol. 2, pp. 1-15, 1994.

[12] M. S. Taqqu, W. Willinger and R. Sherman, "Proof of a fundamental
result in self-similar traffic modeling," SIGCOMM Comput. Commun.
Rev., vol. 27, pp. 5-23, 1997.

[13] D. R. Avresky, "Performance evaluation of the ServerNet(R) SAN
under self-similar traffic," Parallel and Distributed Processing, 1999.
13th International and 10th Symposium on Parallel and Distributed
Processing, 1999. 1999 IPPS/SPDP. Proceedings, pp. 143-147, 1999.

[14] W. J. Dally, Principles and Practices of Interconnection Networks.
Morgan Kaufmann, 2004.

[15] K. Chang, J. Shen and T. Chen, "Evaluation and design trade-offs
between circuit-switched and packet-switched NOCs for application-
specific SOCs," in DAC '06: Proceedings of the 43rd Annual
Conference on Design Automation, 2006, pp. 143-148.

[16] P. Marchal, D. Verkest, A. Shickova, F. Catthoor, F. Robert and A.
Leroy, "Spatial division multiplexing: a novel approach for guaranteed

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 18

throughput on NoCs," Hardware/Software Codesign and System
Synthesis, 2005. CODES+ISSS '05. Third IEEE/ACM/IFIP
International Conference on, pp. 81-86, 2005.

[17] J. Hu, Y. Deng and R. Marculescu, "System-level point-to-point
communication synthesis using floorplanning information," in ASP-
DAC '02: Proceedings of the 2002 Conference on Asia South Pacific
Design automation/VLSI Design, 2002, pp. 573.

[18] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L.
Benini and G. D. Micheli, "NoC Synthesis Flow for Customized
Domain Specific Multiprocessor Systems-on-Chip," vol. 16, pp. 113-
129, 2005.

[19] J. H. Bahn, S. E. Lee and N. Bagherzadeh, "On Design and Analysis of
a Feasible Network-on-Chip (NoC) Architecture," Information
Technology, 2007.ITNG'07.Fourth International Conference on, pp.
1033-1038, 2007.

TABLE III. COMPARISON OF SATURATION LOAD OF NEPA AND DMESH

Network FIFO depth
= 2

FIFO depth
=4

FIFO depth
=8

FIFO depth
=16

FIFO depth
=32

FIFO depth
=64

NePA 0.519 0.595 0.626 0.659 0.686 0.695
DMesh 0.597 0.688 0.752 0.803 0.828 0.855 4x4 Random
Improvement 15.0% 15.6% 20.1% 21.8% 20.6% 23.0%
NePA 0.360 0.361 0.359 0.362 0.365 0.371
DMesh 0.611 0.504 0.545 0.530 0.556 0.537 4x4 Bit-

complement
Improvement 69.7% 39.6% 51.8% 46.4% 52.3% 45.1%
NePA 0.388 0.384 0.385 0.386 0.387 0.387
DMesh 1.000 1.000 1.000 1.000 1.000 1.000 4x4 Bit-reverse
Improvement 157.7% 160.4% 159.7% 159.0% 158.3% 158.3%
NePA 0.422 0.395 0.392 0.392 0.390 0.387
DMesh 0.709 1.000 1.000 1.000 1.000 1.000 4x4 Matrix

transpose
Improvement 68.0% 153.1% 155.1% 155.1% 156.4% 158.3%
NePA 0.298 0.353 0.394 0.423 0.436 0.441
DMesh 0.459 0.509 0.550 0.596 0.627 0.650 8x8 Random
Improvement 54.0% 44.1% 39.5% 40.8% 43.8% 47.3%
NePA 0.090 0.090 0.090 0.090 0.090 0.144
DMesh 0.232 0.221 0.230 0.239 0.244 0.246 8x8 Bit-

complement
Improvement 157.7% 145.5% 155.5% 165.5% 171.1% 70.8%
NePA 0.178 0.174 0.175 0.187 0.199 0.204
DMesh 0.312 0.309 0.304 0.313 0.307 0.311 8x8 Bit-reverse
Improvement 75.2% 77.5% 73.7% 67.3% 54.2% 52.4%
NePA 0.167 0.174 0.174 0.181 0.184 0.184
DMesh 0.317 0.322 0.327 0.373 0.379 0.445 8x8 Matrix

transpose
Improvement 89.8% 85.0% 87.9% 106.0% 105.9% 141.8%

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s) NePA

DMesh

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

(a) 4x4 random traffic (b) 4x4 bit complement traffic (c) 4x4 bit reverse traffic (d) 4x4 matrix transpose traffic

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA
DMesh

(a) 8x8 random traffic (b) 8x8 bit complement traffic (c) 8x8 bit reverse traffic (d) 8x8 matrix transpose traffic

Figure 8. Comparisons of average latency in 4x4 and 8x8 mesh networks (FIFO depth = 4).

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 19

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(a) 4x4 random traffic (b) 4x4 bit complement traffic

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

Traffic Load (flits/node/cycle)
Av

er
ag

e
La

te
nc

y
(c

yc
le

s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(c) 4x4 bit reverse traffic (d) 4x4 matrix transpose traffic

0

20

40

60

80

100

0 0.2 0.4 0.6 0.

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(a) 8x8 random traffic (b) 8x8 bit complement traffic

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

0

20

40

60

80

100

0 0.2 0.4 0.6 0.

Traffic Load (flits/node/cycle)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

NePA_FIFO8 NePA_FIFO16
DMesh_FIFO4 DMesh_FIFO8

(c) 8x8 bit reverse traffic (d) 8x8 matrix transpose traffic

Figure 9. Comparisons of average latency in 4x4 and 8x8 mesh networks with similar router cost.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 20

Session II

Performance Evaluation

Session Chair: Ahmed Hemani, Royal Institute of Technology, Sweden

A Generic Traffic Model for On-Chip Interconnection Networks

Jun Ho Bahn and Nader Bagherzadeh - Qualcomm Inc., USA and UC Irvine, USA
22

A System-C based Microarchitectural Exploration Framework for Latency, Power and

Performance Trade-offs of On-Chip Interconnection Networks

Basavaraj Talwar and Bharadwaj Amrutur - ECE, Indian Institute of Science, Bangalore, India

30

Application Specific Buffer Allocation for Wormhole Routing Networks-on-Chip

Liwei Wang, Yang Cao, Xiaohui Li and Xiaohu Zhu - EIS, Wuhan University, China
37

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 21

A Generic Traffic Model for On-Chip
Interconnection Networks

Jun Ho Bahn
Qualcomm CDMA Technologies

Qualcomm Inc., 5775 Morehouse Drive
San Diego, CA 92121-1714

Email : jbahn@qualcomm.com

Nader Bagherzadeh
EECS, University of California, Irvine

325 Engineering Tower
Irvine, CA 92697-2625
Email : nader@uci.edu

Abstract— On-chip interconnection networks or Network-on-
Chips (NoCs) are becoming the de-facto scaling communication
techniques in Multi-Processor System-on-Chip (MPSoC) or Chip
Multiprocessor (CMP) environment. However, the current traffic
models for on-chip interconnection networks are insufficient to
capture the traffic characteristics as well as evaluate the network
performance. As the technology scaling enables the increase
of available on-chip resources and innumerable new network
architectures are proposed, there is a need to make NoCs more
application-specific. Therefore, a traffic model to characterize
such an application-specific network is necessary. In this paper,
we propose a generic traffic model for on-chip interconnection
networks. Our traffic model is based on three empirically-
derived statistical characteristics using temporal and spatial
distributions. With captured parameters, our model can generate
accurate traffic patterns recursively to show similar statistical
characteristics of the observed on-chip networks. Therefore, using
the proposed traffic model defined by captured statistics, any kind
of on-chip interconnection traffic patterns can be reproduced.

I. INTRODUCTION

As the number of integrated IP cores in the current System-
on-Chips (SoCs) keeps increasing to meet the design re-
quirements for computation-intensive applications and highly
integrated low power solutions, communication requirements
among cores can not be sufficiently satisfied using either
traditional or multi-layer bus architectures because of their
poor scalability and bandwidth limitation on a single bus.
While new interconnection techniques have been explored to
overcome such a limitation, the notion of utilizing Network-
on-Chip (NoC) technologies for the future generation of high
performance and low power chips for myriad of applica-
tions, in particular for wireless communication and multimedia
processing, has been of great importance [1]. By applying
network-like communication which inserts routers in-between
each communication object, the interconnection network im-
proves scalability and freedom from the limitation of complex
wiring. Replacement of SoC busses by NoCs will follow the
same path as data communication systems where from the
economics point of view NoC can potentially reduce SoC
manufacturing cost, time to market, time to volume, and design
risk and at the same time improve performance. According to
[2], the NoC approach has a clear advantage over traditional
busses and most notably as far as the system throughput
is concerned. Though hierarchies of crossbar or multi-layer

busses have characteristics somewhere in between traditional
busses and NoC, they still fall far short of the NoC with respect
to performance and complexity. Recently many researchers
have proposed various routing algorithms as well as different
router architectures appropriate for on-chip interconnection
network environments.

In order to evaluate the performance of either these routing
algorithms or their routers, including implementations, many
researchers have used conventional traffic patterns [3], [4]
or some limited number of real traffic traces. Even though
these static traffic patterns exhibit similar patterns of some
particular applications, there is a fundamental limit in covering
complete traffic patterns of real applications. For this reason,
some researchers have used real traffic patterns extracted
from real applications to evaluate the performance of their
proposed routing algorithm or router based on more practical
benchmarks [5], [6].

In traditional networks such as Internet, Ethernet, and wire-
less LANs transporting TCP/IP, HTTP, and FTP traffic among
others, network traffics have been traced and analyzed to un-
derstand the traffic behavior of these networks and characterize
them. Therefore, various extensive traffic models for diverse
networks have been developed [7], [8], [9], [10], [11], [12],
[13], [14]. These models provide not only meaningful insight
into understanding the traffic behavior of these networks, but
have also been effectively used in evaluating current and newly
designed networks. Because on-chip interconnection network
is a new class of networks where the overall communications
occur in a single chip, a similar approach to understanding
the behavior of NoC traffic and evaluating networks in NoC
environment is needed.

In this paper, we propose a generic traffic model for
NoC environments. The proposed model is based on the
spatial/temporal profile of traffic using three statistical pa-
rameters. These three statistical parameters construct node
burstiness, node injection rate, and the distribution of source-
to-destination pairs. Different from the other previous propos-
als where statistical parameters were extracted from overall
nodes and formulated in a single statistic model of each
component, each statistical parameter is extracted from each
node and the associated statistic model is constructed per node.
Therefore, the degree of accuracy of the proposed traffic model

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 22

TABLE I
CONVENTIONAL STATIC TRAFFIC PATTERNS [3]

Name Pattern
Random λsd = 1/N
Permutation

Bit permutations
Bit complement di =∼ si
Bit reverse di = sb−i−1

Bit rotation di = si+1 mod b
Shuffle di = si−1 mod b
Transpose di = si+b/2 mod b

Digit permutations
Tornado dx = sx + (dk/2e) mod k
Neighbor dx = sx + 1 mod k

in emulating real traffic situation is much higher than the
previous work.

The organization of this paper is as follows. Section 2 pro-
vides previous related works in the field of traffic modeling and
motivation of this paper. Next, Section 3 explains an overview
of our traffic model with three different statistical components
for NoC. In Section 4, the details of each component are pre-
sented and the overall procedure of generating traffic pattern
with the given parameters is described. Section 5 validates the
accuracy of the proposed traffic model by comparing it with
real traffic traces. Finally, Section 6 concludes this paper.

II. RELATED WORK

Conventional traffic patterns consider the spatial distribution
of messages in interconnection networks. Therefore, the distri-
bution between source nodes and destination nodes is defined
depending on the type of conventional traffic patterns. Table I
lists some common static traffic patterns used to evaluate
interconnection networks. In Table I, In conventional traffic
patterns, random traffic is described by a traffic matrix with
all fraction of traffic sent from node λsd as 1/N . Permutation
traffic, in which all traffic from each source is directed to
one destination, can be more compactly represented by a
permutation function. Bit permutations are those in which
each bit di of the b-bit destination address is a function of
one bit of the source address, si. In digit permutations, each
(radix-k) digit of the destination address dx is a function
of a digit sy of the source address. Historically, several of
these patterns are based on communication patterns that arise
in particular applications. For instance, matrix transpose or
corner-turn operations induce the transpose pattern, whereas
fast Fourier transform (FFT) or sorting applications might
cause the shuffle permutation, and fluid dynamics simulations
often exhibit neighbor patterns [3].

While these models enable a network to be stressed with
a regular, predictable pattern and provide NoC researchers
with helpful insights, they do not cover real application
traffics to explore a realistic NoC design-space. Until now,
few researches have been able to present results in the field
of realistic NoC traffic models. Varatkar and Marculescu [15]
have reported the evidence of self-similarity in NoC burst
traffic between on-chip modules in typical MPEG-2 video

applications and captured traffic characteristics between pair-
wise nodes. Also using a generic tile-based communication
architecture, they proposed a technique for synthetically gen-
erating traces having statistical properties similar to those
obtained from real video clips. Soteriou et al. [16] proposed
an empirically-derived model of NoC traffic based on traffic
traces obtained from full system simulations. Their model
comprehensively espouses the spatio-temporal characteristics
of traffic with three dimensionless statistical components in a
three-tuple model. Also they illustrate two potential uses of
their traffic model: how it allows us to characterize and gain
insights on NoC traffic patterns, and how it can be used to
generate synthetic traffic traces that can drive NoC design-
space exploration. Tedesco et al. [17] presented application
driven traffic modeling for NoCs. In their work, applications
are characterized according to their delivery requirements (e.g.
real-time streaming and block transfer) and QoS service levels
(e.g. CBR and VBR). Also they identify three methods to
model traffic: constant injection rate is the most commonly
used, but least accurate. Probabilistic methods are normally
used in simulation for applications with variable rates. Finally
trace-based traffic models are more suitable for emulation.

III. OVERVIEW

We propose a generic traffic model for NoC based on
traffic traces obtained from full system simulation or real
system devices. This model combines the spatio-temporal
characteristics of traffic with three independent components,
(Hs, λs, δ(s,d)) where s and d represent the indices of
source node and destination node, respectively. With three
independent components, the given traffic can be analyzed
and characterized in a statistical manner. Different from the
approach used in [16], each statistical component is derived
per node. To define the burstiness of each node, the Hurst
exponent Hs for source node s, is adopted. As a component
of the characteristics of self-similarity, Hs determines the
temporal burstiness of traffic at each node, that is, the peak
size of injection packets and their injection patterns of arrival
time. To define one of spatial properties in NoC traffic traces,
the distribution of average injection rate at every node, denoted
by λs is captured. Finally δ(s,d) representing the distribution
of traffic ratio from s node to d node in the given injection
rate λs is extracted.

For each component of our (Hs, λs, δ(s,d)) traffic model,
we analyze and extract the proposed statistical distribution
against 8 traffic traces used in [18]. Those are SPLASH-2 [19]
traces gathered by running the benchmarks on Bochs [20], a
multiprocessor simulator with an embedded Linux 2.4 kernel.
Each benchmark was run in Bochs with 49 (= 7×7) concurrent
threads, and the memory trace is captured. This memory trace
is then applied to a memory system simulator that models
the classic MSI (Modified, Shared, Invalid) directory-based
cache coherence protocol, with the home directory nodes
statically assigned based on the least significant bits of the
tag, distributed across all processors in the entire chip.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 23

IV. TRAFFIC MODELING

In this Section, we explain the details of our (Hs, λs, δ(s,d))
traffic model. Based on the extracted parameters, the procedure
for generating a synthetic traffic trace will be provided as well.

A. Temporal Burstiness: Hs

In classic networks, self-similarity is one of the key features
to characterize burstiness as well as long-range dependence
(LRD) of traffic in the temporal sense. To measure such a
burstiness and LRD, the Hurst parameter H is used where
H ∈ (1/2, 1) indicates the presence of LRD. As many
communication traffics are proven to be statistically self-
similar, some researchers already showed that the traffic in
NoC also has a self-similar characteristic [15], [16]. Thus,
we parameterize such a degree of burstiness or LRD using H .
Furthermore, in order to be accurate, this parameter indicating
the burstiness is analyzed on every injection node.

Because the definitions of self-similarity are well described
in the literature, in this Section, a brief description of self-
similarity will be introduced. For more details, the reader is
recommended to read several references [7], [8], [9], [21].

Considering a cumulative process Y (t) with stationary
increments, let Xt be its corresponding incremental process:

Xt = Y (t)− Y (t− 1) (1)

The process X(m)
s is defined as an aggregated process of Xt

if

X(m)
s = [Xsm−m+1 +Xsm−m+2 + . . .+Xsm]/m (2)

Process Xt is self-similar if Xt is indistinguishable from
X

(m)
s . Because this is a very restrictive definition, usually

second-order self-similarity is considered for traffic analysis,
i.e. auto-covariance of the original and aggregated processes
should be same:

γ(m)(k) = γ(k) (3)

lim
m→∞ γ

(m)(k) = γ(k) (4)

where γ(k) = E[(Xt − µ)(Xt+k − µ)] and γ(m)(k) =
E[(X(m)

s −µ)(X(m)
s+k−µ)]. The process Xt is exactly second-

order self-similar or asymptotically second-order self-similar
if Eq. (3) or Eq. (4) is satisfied, respectively.

In order to measure the degree of self-similarity, the Hurst
parameter H is used where a process is self-similar with
parameter H(0 < H < 1) if:

Y (t) = kHY (kt), ∀k > 0, t ≥ 0 (5)

which means that the original and normalized aggregated
processes should have the same distribution. In other words,
the self-similarity can be understood as the ability of an
aggregated process to preserve the burstiness of the original
process, i.e. the property of slowly decaying variance:

var(X(m)) ∼ m2H−2 (6)

In this paper, Eq. (6) is computed to measure the Hurst
parameter H . Table II shows the measured H value per node
for eight different traces.

B. Injection Rate: λs
As one of the spatial parameters in our traffic model,

traffic injection rate determines the distribution of injection
load per node. In [16], this spatial injection distribution is
parameterized by the standard deviation σ of the injection
distribution with an actual coordinate assignment. In that ap-
proach, it assumes that the actual results possess Gaussian-type
distributions. Even though that approach can help the injection
distribution be quantified using single σ value, the mapping to
Gaussian-like distribution is not alway accurate in real NoC
traffic situation. Also it requires large amount of computation
to find out the exact coordinate assignment. Hence, in this
paper, the original distribution of injection rate on every node
is kept as it is. This enables more accurate synthetic traffic
generation than σ-based Gaussian-like distribution. Figure 1
shows injection rate distributions for traffic traces in a 7×7
mesh.

C. Spatial Distribution: δ(s,d)

Another spatial distribution δ(s,d) represents the traffic ratio
from source node s to destination node d based on the injection
rate λs. In [16], spatial hop distribution p is adopted. In order
to formulate the hop count distribution model, they applied the
mechanism so that the mapping should not choose a receiver
whose distance is d hops from the sender unless it cannot
choose any other node whose distance to the sender is less
than d. Also, in that model, there is no concern about the
geometry of destination nodes. In other words, all nodes with
same d-hop distance from the source node are considered to
have the same statistical characteristics. Thus, this assumption
is somehow far from the actual NoC traffic regardless of
the optimal communication mapping. However, our model
considers the difference of location of destination nodes within
same distance of hops when the traffic ratio between source
and destination node is analyzed. Moreover, the matrix of
traffic ratio from each source node is constructed in order to
characterize the spatial distribution of source/destination pairs.
Figure 2 illustrates the distribution of traffic ratio for each node
in the barnes application.

D. Synthetic Traffic Generation

To describe how our (Hs, λs, δ(s,d)) traffic model can
generate synthetic network traffic, we implemented tgNePA,
a tool that automatically generates NoC traffic of the given
network topology from the configured (Hs, λs, δ(s,d)) traffic
model. Figure 3 shows the traffic generation flow in tgNePA.

tgSelfSimilar: Traffic generation based on (Hs, λs). To
generate self-similar NoC traces, tgNePA uses the method
described in [22]. In this method, the synthetic self-similar
traffic is obtained by aggregating multiple sub-streams, each
consisting of alternating Pareto-distributed on/off periods.
Pareto distribution is defined by a heavy-tailed distribution
with the probability-density function f(x) = abα/xα+1, x ≥ b
where α is a shape parameter, and b is a location parameter.
Pareto distribution with 1 < α < 2 has a finite mean and

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 24

TABLE II
MEASURED HURST PARAMETER FOR TRAFFIC TRACES IN 7×7 MESH

barnes fft
0.95322 0.930023 0.976069 0.976115 0.931223 0.958229 0.967662 0.975095 0.941273 0.948791 0.964113 0.951594 0.956773 0.961565

0.953165 0.958007 0.906468 0.927599 0.932508 0.952065 0.938917 0.95084 0.951059 0.966805 0.966816 0.960732 0.952544 0.963932
0.961447 0.950251 0.960211 0.976686 0.923968 0.9375 0.864216 0.95335 0.978645 0.977989 0.962314 0.958788 0.968619 0.963367
0.958195 0.890648 0.918889 0.93756 0.958898 0.927886 0.904769 0.961431 0.973687 0.992332 0.959887 0.96177 0.968292 0.964245
0.956649 0.985442 0.939089 0.920304 0.904582 0.938582 0.885551 0.964755 0.972209 0.972016 0.97097 0.990788 0.968756 0.974325
0.961257 0.88265 0.938839 0.95921 0.96127 0.917485 0.928582 0.993044 0.972676 0.971063 0.975506 0.976879 0.973728 0.970238
0.869166 0.965638 0.895383 0.906786 0.909061 0.883905 0.88992 0.975961 0.980018 0.977654 0.973719 0.968751 0.964043 0.960366
lu ocean
0.924199 0.953505 0.956322 0.953416 0.955267 0.961355 0.949458 0.880499 0.808062 0.794881 0.845817 0.799616 0.816938 0.832904
0.958744 0.95534 0.953154 0.954404 0.954908 0.952774 0.956247 0.7324 0.784654 0.830542 0.826276 0.77571 0.753008 0.795864
0.954391 0.967936 0.985967 0.980213 0.953937 0.95738 0.956906 0.901085 0.865756 0.723628 0.749781 0.781642 0.752834 0.742008
0.959172 0.982929 0.961082 0.954406 0.95408 0.967851 0.956651 0.802515 0.757628 0.798828 0.75681 0.760965 0.790886 0.750362
0.963854 0.9776 0.95748 0.965053 0.992639 0.962783 0.954991 0.82159 0.810766 0.726558 0.748242 0.777665 0.78399 0.78296
0.967356 0.950398 0.952623 0.964804 0.954611 0.961498 0.962472 0.818765 0.770188 0.809174 0.785652 0.803659 0.762584 0.782661
0.956253 0.960129 0.957397 0.95746 0.957518 0.95611 0.954621 0.837008 0.761783 0.87089 0.763205 0.77494 0.78582 0.778135
radix raytrace
0.902839 0.944403 0.96101 0.972136 0.964553 0.947608 0.985433 0.942255 0.961226 0.940355 0.962855 0.95834 0.932357 0.963871
0.957888 0.942072 0.971374 0.973585 0.966459 0.964246 0.977311 0.945377 0.948391 0.943875 0.936158 0.964887 0.943996 0.961554
0.964332 0.957286 0.980439 0.98841 0.983089 0.985034 0.974669 0.945114 0.957771 0.974867 0.950478 0.960309 0.968862 0.945402
0.969146 0.983704 0.971503 0.977166 0.96415 0.981327 0.957322 0.92635 0.967857 0.956754 0.949919 0.951917 0.974327 0.968231
0.973206 0.982417 0.97069 0.960063 0.975664 0.963702 0.969817 0.929483 0.961821 0.964149 0.936166 0.974707 0.941642 0.946531
0.93137 0.966252 0.969756 0.975648 0.958885 0.963826 0.96038 0.949944 0.93797 0.93593 0.943694 0.958023 0.934166 0.947076

0.946714 0.966286 0.961873 0.944223 0.947943 0.965468 0.962096 0.963812 0.963292 0.934751 0.959196 0.958551 0.960313 0.949267
water-nsquared water-spatial
0.938858 0.954619 0.961653 0.961435 0.964605 0.959879 0.983422 0.954124 0.941421 0.96231 0.980993 0.970395 0.968765 0.979926
0.958101 0.944468 0.963525 0.957574 0.95899 0.957685 0.966726 0.967107 0.964892 0.976365 0.954031 0.954496 0.95555 0.951143
0.954599 0.952399 0.978571 0.973547 0.959643 0.974414 0.978607 0.956379 0.958845 0.985977 0.992441 0.946157 0.954781 0.949645
0.995104 0.974171 0.963846 0.987655 0.952222 0.966112 0.952725 0.950117 0.957826 0.949018 0.943914 0.948824 0.960112 0.94836
0.951494 0.971262 0.954555 0.958582 0.982684 0.958186 0.965041 0.94065 0.939393 0.957809 0.954648 0.962962 0.949257 0.950307
0.958905 0.95965 0.959323 0.961995 0.965036 0.963629 0.962181 0.95947 0.95342 0.956035 0.95468 0.955787 0.955492 0.955214
0.961457 0.955258 0.957095 0.965474 0.952312 0.959847 0.965554 0.969339 0.965527 0.963964 0.966033 0.961421 0.960948 0.962182

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

T
ra
ff
ic
 L
o
a
d
 (
fl
it
s
/c
y
c
le
)

x-direction

y-direction

(a) barnes

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.005

0.01

0.015

0.02

0.025

0.03

T
ra
ff
ic
 L
o
a
d
 (
fl
it
s
/c
y
c
le
)

x-direction

y-direction

(b) fft

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
T
ra
ff
ic
 L
o
a
d
 (
fl
it
s
/c
y
c
le
)

x-direction

y-direction

(c) lu

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
ra
ff
ic
 L
o
a
d
 (
fl
it
s
/c
y
c
le
)

x-direction

y-direction

(d) ocean

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

T
ra
ff
ic
 L
o
a
d
 (
fl
it
s
/c
y
c
le
)

x-direction

y-direction

(e) radix

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

T
ra
ff
ic
 L
o
a
d
 (
fl
it
s
/c
y
c
le
)

x-direction

y-direction

(f) raytrace

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
ra

ff
ic

 L
o
a
d
 (
fl
it
s
/c

y
c
le

)

x-direction

y-direction

(g) water-nsquared

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

T
ra

ff
ic

 L
o
a
d
 (
fl
it
s
/c

y
c
le

)

x-direction

y-direction

(h) water-spatial

Fig. 1. Injection rate distributions for traffic traces in 7×7

an infinite variance. To generate Pareto-distributed values, the
following formula is used: XPareto = b/[U1/α] where U is a
uniform random variable (0 ≤ U ≤ 1). The Hurst parameter H
of self-similar trace generated by this method can be derived
by H = (3− α)/2 [22], [23].

Additionally, while generating Pareto-distributed values, the
injection rate for each sub-stream can be controlled. Therefore,
by applying λs to each generation of self-similar stream for
the corresponding node s, the (Hs, λs) configured self-similar
traffic can be obtained.

Depending on the method of self-similar traffic generation,
its accuracy may be varied. To minimize the error between the
expected (Hs, λs) and the measured value from the generated

traffic, a recursion is applied as shown in the first phase
tgSelfSimilar of Figure 3. Along with generating self-similar
traffic with the expected (Hs, λs) configuration, (H ′s, λ

′
s)-

tuple components of the generated traffic are measured. If the
error of the expected (Hs, λs) and the measured (H ′s, λ

′
s) is

acceptable, then the generated self-similar traffic is delivered to
the next step splitPE. Otherwise, the generation of self-similar
traffic with the similar configuration is repeated.

splitPE: Traffic generation based on δ(s,d). The second
phase generates the destination node upon the generated self-
similar traffic of each node. Because the ratio of traffic from
each source node s to each destination node d is already pro-
vided by the distribution of δ(s,d), the generation of destination

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 25

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ra
ti
o

x-direction

y-direction

(a) (0,0)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ra
ti
o

x-direction

y-direction

(b) (0,3)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

ra
ti
o

x-direction

y-direction

(c) (1,1)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

ra
ti
o

x-direction

y-direction

(d) (2,2)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

ra
ti
o

x-direction

y-direction

(e) (3,4)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ra
ti
o

x-direction

y-direction

(f) (4,1)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ra
ti
o

x-direction

y-direction

(g) (5,3)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ra
ti
o

x-direction

y-direction

(h) (6,1)

Fig. 2. Distributions of traffic ratio on selected nodes for barnes traffic trace in 7×7

On/Off

sub-stream 1

On/Off

sub-stream 2

On/Off

sub-stream N

Aggregator

Synthetic Self-Similar

StreamGen

(Hs, λs)

Estimator

Stream

Buffer

pass

stream_in

On/Off

sub-stream 1

On/Off

sub-stream 2

On/Off

sub-stream N

Aggregator

Synthetic Self-Similar

StreamGen

(Hs, λs)

Estimator

Stream

Buffer

pass

stream_in

On/Off

sub-stream 1

On/Off

sub-stream 2

On/Off

sub-stream N

Aggregator

Synthetic Self-Similar

StreamGen

(Hs, λs)

Estimator

Stream

Buffer

pass

stream_in

stream for PE1

stream for PE2

stream for PE3

stream for PEM
On/Off

sub-stream 1

On/Off

sub-stream 2

On/Off

sub-stream N

Aggregator

Synthetic Self-Similar

StreamGen

(Hs, λs)

Estimator

Stream

Buffer

pass

stream_in

tgSelfSimilar

splitPE
Mapping of Self-Similar Streams for PEx

with Destination Distribution

Final Synthetic

Traffic Trace

Topology Size M

Hurst Parameter

for each node

0.5 < Hs < 1.0

Injection

Distribution�
s

Spatial Distribution

for Traffic Ratio������
Fig. 3. tgNePA traffic generation flow diagram

node for each instance of traffic from the corresponding source
node s can be accurately controlled randomly. Different from
the Trident’s approach [16], the ratio of traffic for each pair of
source and destination is separately assigned. Therefore, the
distribution of source/destination pairs can be more accurately
emulated.

V. VALIDATION

Each synthetic traffic is generated using the analyzed (Hs,
λs, δ(s,d)) for each application mentioned in the previous

Section. In order to control the recursion of tgSelfSimilar, we
set the marginal error bound of Hs and λs to 5%. In recursive
generation of self-similar traffic for each node, the Hurst
parameter Hs can be easily matched with the given marginal
percentage. However, in matching the lower injection rate λs,
it requires excessive computation time. For that reason, to
reduce such a large computation time in matching the injection
rate, a proportional margin value is applied as an alternative
approach. That is, in relatively higher injection rate, the tighter
margin value is applied. Reversely, in relatively lower injection

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 26

rate, the lighter margin value is applied. For instance, by using
logarithmic scale of injection rate, the marginal value can
be scaled by multiplying | log10(λs)|| log10(λs)|. Because the
higher injection rate is dominant, the effect of larger error
at source nodes with lower injection rates can be minimized.
Table III and Table IV show the measured Hurst parameter
and injection rates of synthetic traffic according to the an-
alyzed traffic model of each application. For Hs parameter
in synthetic traffic, the accuracy is in the range of 2.7% to
4.3% average error bound. However, the accuracy of λs is
varied depending on the level of injection rates of applications
because the propotional margin value to the level of injection
rates is applied in matching the injection rate during the
first phase of traffic generation. For instance, in barnes

application, the average of injection rates of original traffic is
0.065 and the ratio of average error in injection rates is 6.8%.
On the other hand, in fft application, the average of injection
rates of original traffic is 0.0089 and the ratio of average error
is 26%. In this case, the level of injection rates is relatively low,
i.e. the scale factor to apply a propotional margin is 27 (=33)
during the recursion. Therefore, the resultant synthetic traffic
has relatively large error from the original injection rates.

For source/destination distribution δ(s,d) of synthetic traffic,
its accuracy is almost 100% as shown in Figure 4.

Finally, throughout the cycle accurate NoC simulation [24],
[25] using original traffic traces as well as synthetic traffic
traces, the accuracy of overall network performance is ob-
served. As shown in Table V, the synthetic trafic patterns for
applications except for fft and raytrace have maximum
17% error from the perspective of the offered load. For two
exceptional applications with high error ratio in the offered
load, their offered load is relatively low. Therefore, even a
small difference results in a large percentage of error ratio.

VI. CONCLUSION AND FUTURE WORKS

We proposed a generic traffic model for on-chip intercon-
nection networks. To keep the temporal and spatial distribution
of traffic traces, every statistical information is measured
per node. In order to characterize the burstiness of injection
nodes, the Hurst parameter Hs is selected. For specifying the
temporal statistics, the distribution of injection rates λs and
ratio of source/destination pairs δ(s,d) on the given source
node are used. With the proposed traffic model, we also
introduced a recursive traffic generation method to minimize
the error of statistical components, and allow synthetic traffic
traces with similar temporal and spatial statistics to be gen-
erated. Throughout detailed comparison of each component
and performance simulation, our proposed traffic model can
reconstruct traffic patterns with a similar tendancy of real NoC
traffic and provide insights into NoC traffic.

As the future works, an advanced methodology needs to
be developed to validate the accuracy of synthetic traffic
patterns. In this paper, only the statistical measurement such
as comparing average parameters, which does not evaluate the
accuracy in time, is used. To be scalable, the proposed traffic
model should be tested in different size or type of networks.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in DAC ’01: Proceedings of the 38th Conference on
Design Automation. New York, NY, USA: ACM, 2001, pp. 684–689.

[2] ARTERIS, “A comparison of network-on-chip and busses,”
http://www.arteris.com/noc whilepaper.pdf.

[3] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers,
2004.

[4] K. Lahiri, S. Dey, and A. Raghunathan, “Evaluation of the traffic-
performance characteristics of system-on-chip communication architec-
tures,” in VLSID ’01: Proceedings of the 14th International Conference
on VLSI Design. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 29–35.

[5] J. Hu and R. Marculescu, “Dyad: smart routing for networks-on-chip,”
in DAC ’04: Proceedings of the 41st annual conference on Design
automation. New York, NY, USA: ACM, 2004, pp. 260–263.

[6] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, “A methodology for
design of application specific deadlock-free routing algorithms for noc
systems,” in CODES+ISSS ’06: Proceedings of the 4th International
Conference on Hardware/Software Codesign and System Synthesis.
New York, NY, USA: ACM, 2006, pp. 142–147.

[7] P. Doukhan, G. Oppenheim, and M. S. Taqqu, Theory and Applications
of Long-Range Dependence. Birkhäuser Boston, December 2002.

[8] K. Park and W. Willinger, Self-Similar Network Traffic and Performance
Evaluation. New York, NY, USA: John Wiley & Sons, Inc., September
2000.

[9] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of Ethernet traffic (extended version),” IEEE/ACM
Trans. Network, vol. 2, no. 1, pp. 1–15, February 1994.

[10] V. Paxson and S. Floyd, “Wide-area traffic: The failure of poisson
modeling,” in SIGCOMM ’94: Proceedings of the Conference on Com-
munications Architectures, Protocols and Applications. New York, NY,
USA: ACM, 1994, pp. 257–268.

[11] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan, “Charac-
terizing user behavior and network performance in a public wireless
lan,” SIGMETRICS Performance Evaluation Review, vol. 30, no. 1, pp.
195–205, June 2002.

[12] I. Y. Bucher and D. A. Calahan, “Models of access delays in multi-
processor memories,” IEEE Trans. Parallel Distributed Systems, vol. 3,
no. 3, pp. 270–280, May 1992.

[13] F. Darema-Rogers, G. F. Pfister, and K. So, “Memory access patterns of
parallel scientific programs,” in SIGMETRICS ’87: Proceedings of the
1987 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems. New York, NY, USA: ACM, 1987, pp. 46–58.

[14] S. W. Turner, “Performance analysis of multiprocessor interconnection
networks using a burst-traffic model,” Ph.D. dissertation, Champaign,
IL, USA, 1995.

[15] G. V. Varatkar and R. Marculescu, “On-chip traffic modeling and
synthesis for mpeg-2 video applications,” IEEE Trans. Very Large Scale
Integration (VLSI) Systems, vol. 12, no. 1, pp. 108–119, January 2004.

[16] V. Soteriou, H. Wang, and L.-S. Peh, “A statistical traffic model for
on-chip interconnection networks,” in MASCOTS ’06 : Proceeding of
the 14th IEEE International Symposium on Modeling, Analysis, and
Simulation. Washington, DC, USA: IEEE Computer Society, 2006, pp.
104–116.

[17] L. Tedesco, A. Mello, L. Giacomet, N. Calazans, and F. Moraes, “Appli-
cation driven traffic modeling for nocs,” in SBCCI ’06: Proceedings of
the 19th Annual Symposium on Integrated Circuits and Systems Design.
New York, NY, USA: ACM, 2006, pp. 62–67.

[18] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual channels:
Towards the ideal interconnection fabric,” in ISCA ’07: Proceedings of
the 34th Annual International Symposium on Computer Architecture.
New York, NY, USA: ACM, 2007, pp. 150–161.

[19] “Splash-2,” http://www-flash.stanford.edu/apps/SPLASH/.
[20] K. P. Lawton, “Bochs: A portable pc emulator for unix/x,” Linux Journal,

vol. 1996, no. 29es, p. 7, September 1996.
[21] B. Tsybakov and N. D. Georganas, “Self-similar processes in communi-

cations networks,” IEEE Trans. Information Theory, vol. 44, no. 5, pp.
1713–1725, September 1998.

[22] M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a fundamental
result in self-similar traffic modeling,” SIGCOMM Computer Commu-
nication Review, vol. 27, no. 2, pp. 5–23, April 1997.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 27

TABLE III
MEASURED HURST PARAMETER FOR SYNTHETIC TRAFFIC TRACES IN 7×7 MESH

barnes fft
0.922604 0.900864 0.929619 0.932654 0.887087 0.924292 0.924685 0.930469 0.901261 0.904385 0.919863 0.905215 0.920039 0.927163
0.910217 0.92359 0.894023 0.892669 0.900064 0.922199 0.916118 0.918589 0.930192 0.932514 0.93347 0.921322 0.913654 0.953305
0.913906 0.924976 0.918239 0.93298 0.878349 0.890662 0.87693 0.907441 0.929731 0.931737 0.91638 0.911257 0.935479 0.91756
0.933494 0.873282 0.90397 0.912061 0.924956 0.891938 0.887996 0.927311 0.927169 0.950335 0.933219 0.934989 0.923255 0.925058
0.926644 0.949166 0.894207 0.888905 0.879505 0.917606 0.898869 0.930802 0.92372 0.95463 0.924153 0.942931 0.920807 0.942047
0.940055 0.898484 0.894776 0.911445 0.925797 0.888928 0.922339 0.950361 0.932204 0.937753 0.935888 0.929717 0.925567 0.928409
0.831892 0.917855 0.917632 0.892862 0.879119 0.886606 0.862894 0.944464 0.931497 0.933646 0.927396 0.928349 0.932712 0.920281

average error ratio = 0.032 average error ratio = 0.041
lu ocean
0.920638 0.913734 0.926406 0.914993 0.912014 0.929957 0.930625 0.8483 0.783373 0.770411 0.875487 0.766814 0.828058 0.824162
0.915871 0.913395 0.923574 0.93993 0.914495 0.925637 0.910338 0.739303 0.77524 0.798285 0.8164 0.80788 0.719764 0.780451
0.919504 0.95263 0.937157 0.935734 0.908091 0.915819 0.916393 0.895681 0.849855 0.709589 0.728271 0.758329 0.756766 0.705397
0.917747 0.936518 0.91593 0.915539 0.912704 0.94054 0.92322 0.841761 0.745178 0.807255 0.721676 0.736948 0.787291 0.71473
0.919705 0.933109 0.91106 0.918234 0.944434 0.923524 0.913384 0.837015 0.799498 0.699795 0.717817 0.815538 0.754053 0.804242
0.926757 0.904367 0.90686 0.927362 0.912072 0.916251 0.91677 0.805689 0.780835 0.790708 0.818814 0.764959 0.742495 0.753796
0.917779 0.929412 0.920856 0.918243 0.920673 0.918731 0.924098 0.799607 0.76778 0.853409 0.795997 0.752484 0.785473 0.752427

average error ratio = 0.039 average error ratio = 0.027
radix raytrace
0.887586 0.927803 0.92179 0.927197 0.920037 0.902051 0.94445 0.90344 0.923164 0.94793 0.921658 0.919907 0.930598 0.916547
0.912924 0.912437 0.92907 0.935315 0.930807 0.920588 0.93943 0.933545 0.915805 0.938897 0.945765 0.93872 0.899207 0.93716
0.94104 0.929403 0.936362 0.946848 0.956438 0.937805 0.931888 0.908462 0.912697 0.931622 0.937748 0.918021 0.927636 0.909152

0.941251 0.936482 0.925917 0.930899 0.918615 0.940462 0.915708 0.953294 0.941418 0.915519 0.924081 0.906276 0.946177 0.926767
0.928504 0.94163 0.923772 0.921857 0.933592 0.916538 0.9224 0.919059 0.916655 0.923873 0.925912 0.949737 0.902823 0.905981
0.892508 0.92093 0.927384 0.932629 0.915048 0.933493 0.91771 0.953268 0.903407 0.921178 0.905038 0.914827 0.890978 0.909914
0.923702 0.926957 0.916387 0.906687 0.904082 0.917981 0.93198 0.934584 0.917112 0.917526 0.934793 0.918665 0.937771 0.920748

average error ratio = 0.041 average error ratio = 0.032
water-nsquared water-spatial
0.898308 0.923437 0.940954 0.922098 0.923039 0.913735 0.934255 0.924825 0.907196 0.917813 0.935485 0.928298 0.923866 0.931682
0.937719 0.915814 0.925254 0.911514 0.913656 0.911644 0.930135 0.91907 0.921237 0.929094 0.907 0.929373 0.920545 0.915879
0.913194 0.919129 0.936486 0.927012 0.919423 0.930479 0.932936 0.924795 0.913452 0.938763 0.944932 0.8999 0.923134 0.906942
0.946839 0.928766 0.920046 0.945132 0.909967 0.92056 0.91277 0.907262 0.918599 0.904109 0.905521 0.91763 0.927629 0.90155
0.913586 0.923798 0.90929 0.913297 0.93518 0.913151 0.921679 0.901858 0.903175 0.930372 0.908927 0.917512 0.912481 0.926686
0.917045 0.914046 0.917961 0.918059 0.917218 0.919949 0.918271 0.920825 0.909482 0.909743 0.915424 0.927488 0.922289 0.920409
0.916328 0.948779 0.910059 0.925256 0.912018 0.919631 0.91887 0.931546 0.919134 0.919032 0.919456 0.925384 0.922665 0.92463

average error ratio = 0.043 average error ratio = 0.041

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

ra
ti
o

x-direction

y-direction

(a) (0,0)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ra
ti
o

x-direction

y-direction

(b) (0,3)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

ra
ti
o

x-direction

y-direction

(c) (1,1)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

ra
ti
o

x-direction

y-direction

(d) (2,2)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

ra
ti
o

x-direction

y-direction

(e) (3,4)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ra
ti
o

x-direction

y-direction

(f) (4,1)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ra
ti
o

x-direction

y-direction

(g) (5,3)

1 2 3 4 5 6 7

S1

S3

S5

S7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ra
ti
o

x-direction

y-direction

(h) (6,1)

Fig. 4. Distributions of traffic ratio on selected nodes for synthetic traffic trace of barnes application in 7×7

[23] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-
similarity through high-variability: Statistical analysis of ethernet lan
traffic at the source level,” SIGCOMM Computer Communication Re-
view, vol. 25, no. 4, pp. 100–113, October 1995.

[24] J. H. Bahn, S. E. Lee, and N. Bagherzadeh, “On design and analysis
of a feasible network-on-chip (noc) architecture,” in ITNG ’07: Pro-
ceedings of the International Conference on Information Technology.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 1033–1038.

[25] ——, “Design of a router for network-on-chip,” International Journal
of High Performance Systems Architecture, vol. 1, no. 2, pp. 98–105,
2007.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 28

TABLE IV
COMPARISON OF INJECTION RATES BETWEEN ORIGINAL AND SYNTHETIC TRAFFIC TRACES IN 7×7 MESH

original traffic synthetic traffic
barnes

0.059230 0.053724 0.027742 0.072139 0.042431 0.022027 0.083564 0.082931 0.055818 0.034412 0.067748 0.044069 0.032461 0.099190
0.028138 0.026441 0.091737 0.040663 0.027105 0.018616 0.157872 0.034190 0.034794 0.100266 0.042767 0.025398 0.023744 0.175239
0.021208 0.034636 0.167460 0.051668 0.056595 0.171639 0.074054 0.023813 0.043012 0.187606 0.060602 0.057168 0.164082 0.080500
0.018661 0.168760 0.039418 0.035184 0.021129 0.190589 0.027948 0.023320 0.160879 0.043212 0.038176 0.021441 0.183314 0.036472
0.015542 0.290371 0.044580 0.043946 0.154056 0.052408 0.025951 0.017888 0.324491 0.062108 0.059061 0.153222 0.052371 0.026421
0.024136 0.064680 0.028955 0.018944 0.225996 0.028720 0.025712 0.025948 0.067938 0.031171 0.026097 0.254005 0.033386 0.029015
0.112588 0.033496 0.037716 0.046235 0.030914 0.038005 0.022475 0.115044 0.045602 0.046282 0.056193 0.035571 0.060112 0.027397

average error ratio = 0.066
fft

0.029666 0.021464 0.006244 0.008981 0.003974 0.004094 0.007642 0.044174 0.022187 0.011228 0.013225 0.007996 0.008160 0.011472
0.004875 0.005072 0.008658 0.006987 0.004060 0.006191 0.008248 0.009111 0.007835 0.015021 0.013979 0.008017 0.011784 0.015275
0.005504 0.012254 0.013928 0.004325 0.005509 0.008301 0.005121 0.009686 0.016122 0.018494 0.008304 0.009961 0.013941 0.009420
0.005197 0.010923 0.015967 0.006519 0.006589 0.010280 0.006026 0.010128 0.021058 0.019755 0.011395 0.010854 0.019347 0.010866
0.005839 0.013510 0.007209 0.007880 0.028822 0.009014 0.009372 0.010099 0.016749 0.013635 0.014502 0.029346 0.017603 0.017984
0.024218 0.006013 0.005391 0.005813 0.007263 0.005757 0.005479 0.028910 0.011271 0.013258 0.013190 0.017048 0.009654 0.010647
0.010977 0.006434 0.006770 0.009269 0.005420 0.007020 0.005331 0.020612 0.011626 0.012168 0.016830 0.010672 0.011232 0.010410

average error ratio = 0.27
lu

0.031522 0.031486 0.020856 0.023430 0.015734 0.022615 0.017442 0.035190 0.033321 0.024563 0.027929 0.016210 0.027098 0.020902
0.020890 0.021314 0.019032 0.020641 0.016205 0.020843 0.024755 0.022980 0.024165 0.022151 0.022552 0.018941 0.023302 0.029638
0.020656 0.026310 0.080935 0.062681 0.022026 0.032159 0.025184 0.024147 0.031387 0.084642 0.073180 0.025317 0.037863 0.028438
0.023138 0.066632 0.025918 0.021733 0.019832 0.038455 0.022993 0.026949 0.076103 0.028331 0.023800 0.021964 0.045441 0.027337
0.029276 0.062923 0.023083 0.026969 0.124827 0.022259 0.015869 0.034131 0.067290 0.025380 0.030227 0.131003 0.026182 0.018190
0.033716 0.017579 0.016078 0.023511 0.024204 0.022110 0.021272 0.039662 0.020108 0.017948 0.027392 0.027782 0.023304 0.024658
0.021180 0.021210 0.022325 0.025828 0.022391 0.016425 0.016723 0.024829 0.024846 0.026269 0.030037 0.026304 0.018605 0.019671

average error ratio = 0.13
ocean

0.032656 0.052407 0.053066 0.034972 0.028506 0.029530 0.030476 0.035787 0.057154 0.057344 0.040709 0.032434 0.034281 0.034655
0.059482 0.076336 0.048041 0.047850 0.035247 0.066863 0.082566 0.063344 0.083863 0.051858 0.053600 0.039598 0.070091 0.087853
0.086836 0.035133 0.147355 0.105736 0.030472 0.067765 0.047462 0.096221 0.039389 0.150070 0.109829 0.033589 0.066591 0.050848
0.033205 0.123656 0.033226 0.037146 0.090287 0.046643 0.037019 0.036830 0.128103 0.038558 0.038684 0.093770 0.050305 0.038934
0.031955 0.035925 0.056059 0.063624 0.060362 0.034188 0.035604 0.037264 0.041204 0.057429 0.063482 0.064157 0.036824 0.038539
0.086679 0.068636 0.064304 0.067920 0.113985 0.062790 0.078873 0.098110 0.074006 0.071210 0.077321 0.119170 0.066208 0.081037
0.134312 0.096478 0.077706 0.371114 0.106355 0.055866 0.069098 0.139972 0.103311 0.085479 0.383716 0.110420 0.059998 0.076108

average error ratio = 0.067
radix

0.085885 0.036942 0.013971 0.020770 0.013779 0.026615 0.075784 0.088893 0.044055 0.015655 0.023982 0.014646 0.031706 0.087981
0.020545 0.032627 0.068298 0.015802 0.014502 0.016102 0.086488 0.023399 0.039103 0.071430 0.017994 0.016906 0.018508 0.098817
0.015641 0.013742 0.045850 0.088507 0.023404 0.047885 0.018831 0.017750 0.016331 0.052414 0.106077 0.027570 0.055200 0.021370
0.029354 0.122007 0.030738 0.020711 0.043255 0.096830 0.024630 0.031458 0.125732 0.036056 0.021926 0.049505 0.114297 0.028689
0.021256 0.057330 0.027209 0.028700 0.050168 0.035776 0.018404 0.022906 0.065534 0.032163 0.032332 0.060077 0.040638 0.021660
0.100576 0.014770 0.022440 0.024386 0.019568 0.015721 0.019553 0.105422 0.016417 0.026233 0.027580 0.022311 0.018466 0.023020
0.063424 0.022736 0.014779 0.049019 0.025052 0.015360 0.012427 0.074280 0.026441 0.015996 0.056243 0.028725 0.017785 0.014806

average error ratio = 0.13
raytrace

0.023664 0.021465 0.007970 0.013069 0.016971 0.004876 0.008253 0.026600 0.024533 0.015101 0.015422 0.018870 0.007748 0.013036
0.002765 0.002812 0.004423 0.003225 0.005511 0.003513 0.010775 0.006357 0.006265 0.008340 0.005851 0.009994 0.006027 0.012393
0.004837 0.002790 0.034439 0.006664 0.003718 0.008369 0.002179 0.006846 0.005459 0.039667 0.013511 0.006941 0.016444 0.004676
0.003348 0.006765 0.001843 0.002009 0.002106 0.004217 0.002200 0.007861 0.013654 0.004120 0.003902 0.004186 0.008048 0.004354
0.002909 0.008605 0.002654 0.002212 0.009745 0.003546 0.003611 0.006384 0.012687 0.005938 0.004182 0.012975 0.007668 0.008029
0.009046 0.002361 0.002462 0.005211 0.013867 0.002560 0.002273 0.019626 0.005373 0.005123 0.007910 0.014637 0.004454 0.004494
0.006204 0.002753 0.002233 0.005590 0.002890 0.003757 0.002269 0.013494 0.004253 0.004473 0.008239 0.005175 0.007742 0.004435

average error ratio = 0.55
water-nsquared

0.022009 0.016074 0.006600 0.013258 0.008507 0.006761 0.032313 0.023661 0.018801 0.009436 0.014747 0.010829 0.008875 0.035534
0.009806 0.010507 0.013351 0.009940 0.010067 0.009624 0.014857 0.013117 0.012558 0.015723 0.014398 0.010760 0.011149 0.016496
0.010534 0.012138 0.029008 0.025092 0.013357 0.027807 0.032449 0.012128 0.013980 0.034044 0.028754 0.015152 0.031198 0.038481
0.085102 0.025618 0.011492 0.051211 0.008794 0.012639 0.009679 0.096370 0.027683 0.013569 0.057958 0.010880 0.014441 0.013205
0.008935 0.018494 0.009593 0.010994 0.042124 0.009718 0.010690 0.012895 0.020918 0.011417 0.012446 0.049889 0.013163 0.012201
0.010824 0.009237 0.008589 0.010808 0.015551 0.010871 0.009337 0.012715 0.012761 0.011246 0.012833 0.016926 0.013036 0.012725
0.012572 0.009745 0.008497 0.015741 0.010567 0.009653 0.016860 0.014897 0.012041 0.009559 0.018343 0.012647 0.013809 0.019778

average error ratio = 0.18
water-spatial

0.039134 0.024893 0.023346 0.041009 0.027349 0.025811 0.039816 0.045553 0.029164 0.026863 0.046777 0.031364 0.030894 0.046882
0.025982 0.026905 0.038835 0.020124 0.020240 0.013104 0.015139 0.027518 0.029762 0.044945 0.023105 0.023776 0.014670 0.017940
0.019024 0.021667 0.069799 0.099872 0.012199 0.012508 0.014645 0.022233 0.024674 0.080859 0.111213 0.014298 0.014812 0.016507
0.022947 0.031320 0.012389 0.019785 0.012086 0.027014 0.012403 0.025280 0.036956 0.013214 0.022760 0.013890 0.031608 0.014042
0.012658 0.021574 0.014751 0.012530 0.023434 0.012939 0.013315 0.014053 0.023360 0.016113 0.012756 0.024740 0.014915 0.015571
0.015907 0.011776 0.011851 0.011625 0.015237 0.012631 0.019781 0.018469 0.013941 0.013507 0.013421 0.016467 0.014772 0.021343
0.023773 0.014841 0.012444 0.019787 0.012952 0.012253 0.013045 0.026972 0.017753 0.014759 0.021032 0.014798 0.013726 0.014950

average error ratio = 0.14

TABLE V
COMPARISON OF CYCLE ACCURATE NOC SIMULATION BETWEEN ORIGINAL AND SYNTHETIC TRAFFIC TRACES IN 7×7 MESH

original traffic synthetic traffic error ratio (%)
application offered load avg. latency offered load avg. latency offered load avg. latency
barnes 0.06522 7.26 0.06951 7.32 6.58 0.86
fft 0.00889 8.20 0.01125 7.95 26.63 2.94
lu 0.03560 7.67 0.03240 7.52 8.99 2.17

ocean 0.06881 7.65 0.07345 7.78 6.75 1.70
radix 0.03690 7.96 0.04177 8.00 13.18 0.42

raytrace 0.00636 7.99 0.00987 7.95 55.21 0.53
water-nsquared 0.01649 7.93 0.01939 7.77 17.60 2.22
water-spatial 0.02221 7.99 0.02529 7.76 13.83 2.89

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 29

A System-C based Microarchitectural Exploration
Framework for Latency, Power and Performance
Trade-offs of On-Chip Interconnection Networks

Basavaraj Talwar and Bharadwaj Amrutur
Electrical and Communication Engineering Department, Indian Institute of Science, Bangalore.

Email: {bt,amrutur}@ece.iisc.ernet.in

Abstract— We describe a System-C based framework we are
developing, to explore the impact of various architectural and mi-
croarchitectural level parameters of the on-chip interconnection
network elements on its power and performance. The framework
enables one to choose from a variety of architectural options
like topology, routing policy, etc., as well as allows experimen-
tation with various microarchitectural options for the individual
links like length, wire width, pitch, pipelining, supply voltage
and frequency. The framework also supports a flexible traffic
generation and communication model. We provide preliminary
results of using this framework to study the power, latency
and throughput of a 4x4 multi-core processing array using
mesh, torus and folded torus, for two different communication
patterns of dense and sparse linear algebra. The traffic consists
of both Request-Response messages (mimicing cache accesses)
and One-Way messages. We find that the average latency can be
reduced by increasing the pipeline depth, as it enables higher link
frequencies. We also find that there exists an optimum degree of
pipelining which minimizes energy-delay product.

I. INTRODUCTION

On-chip interconnection networks (ICN) are critical ele-
ments of modern system-on-chip as well as multi-core designs.
These chips have a multiplicity of communicating entities
like programmable processing elements, hardware accelera-
tion engines, memory blocks as well as off-chip interfaces.
The communication patterns between these entities is very
application dependent and diverse in terms of connectivity,
burstiness, latency and bandwidth requirements. With power
having become a serious design constraint, there is a great
need for designing ICN which meets the target communication
requirements, while minimizing power using all the tricks
available at the architecture, microarchitecture and circuit
levels of the design.

Many simulation tools have been developed to aid designers
in ICN space exploration [1] [2]. These tools usually model
the ICN elements at a higher level abstraction of switches,
links and buffers and help in power/performance trade-off
studies [3]. These are used to research the design of Router
architectures [4] [5] and ICN topologies [6] with varying
area/performance trade-offs for general purpose SoCs or to
cater to specific applications. Kogel et. al. [1] present a
modular exploration framework to capture performance of
point-to-point, shared bus and crossbar topologies. Impacts of
varying topologies, link and router parameters on the overall
throughput, area and power consumption of the system (SoCs

and Multicore chips) using relevant traffic models is discussed
in [7]. Orion [2] is a power-performance interconnection
network simulator that is capable of providing power and per-
formance statistics. Orion model estimates power consumed by
Router elements (crossbars, fifos and arbiters) by calculating
switching capacitances of individual circuit elements. Most
of these tools do not allow for exploration of the various link
level options of wire width, pitch, serialization, repeater sizing,
pipelining, supply voltage and operating frequency.

On the other hand, tools exist to separately explore these
low level link options to various degrees as in [8], [9] and
[10]. Work in [8] explores use of heterogeneous interconnects
optimized for delay, bandwidth or power by varying design
parameters such as a buffer sizes, wire width and number
of repeaters on the interconnects. Courtay et. al [9] have
developed a high-level delay and power estimation tool for
link exploration that offers similar statistics as Intacte does.
The tool allows changing architectural level parameters such
as different signal coding techniques to analyze the effects on
wire delay/power. Intacte [10] provides a similar capability to
explore link level design options and is used in this research.

It is clear from works like [11] that there is a need
for a co-design of interconnects, processing elements and
memory blocks to fully optimize the overall system-on-chip
performance. This necessitates a simulation framework which
allows a co-simulation of the communicating entities along
with ICN simulation. Additionally, to optimize power fully,
one also needs to incorporate the link-level microarchitectural
choices of pipelining etc. Hence we are developing a System-C
framework which enables one to hook up actual communicat-
ing entities, along with the ICN and also allows for exploration
of architectural and microarchitectural parameters of the ICN,
in order to obtain the latency, throughput and power trade-offs.
Results of trade-off studies in this paper consider Energy-
Delay product (of the NoC) as the optimization parameter.
Effects of wire density and area of NoC have not been taken
into account in our experiments. We defer this study for future
work.

We report on the design of this framework in System-
C in Section II. We are using this framework to study
the network design of a multi-core chip, supporting various
communication patterns as in [12] for different classes of
parallel computing benchmarks. We use a mix of Request-

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 30

Fig. 1. Architecture of the SystemC framework.

Response and One-way traffic generation model to mimic
realistic traffic patterns generated by these benchmarks. We
use two benchmarks, Dense Linear Algebra (DLA) and Sparse
Linear Algebra (SLA) benchmark communication patterns on
three NoC topologies (2D Mesh, 2D Torus and Folded 2D
Torus) to determine the average latency, throughput and power
under different amounts of link pipelining and present some
preliminary results in Section III. We draw some conclusions
and outline future work in Section IV.

II. NOC EXPLORATION FRAMEWORK

The NoC exploration framework (Figure 1) has been built
upon Open Core Protocol-IP models [13] using OSCI SystemC
2.0.1 [14] on Linux (2.6.8-24.25-default). The framework
contains Router, Link and Processing Element (PE) modules
and each can be customized via various parameters and will
be described in more detail next. The NoC modules can
be interconnected to form a desired NoC. The PE module
represents any communicating entity on the SoC and not
just the processing element. We can either hookup an ac-
tual executable model of the entity or some abstract model
representing its communication characteristics. For abstract
models, we support many different traffic generation and
communication patterns. The link module can be used to
customize the bit-width of the links as well as the degree
of pipelining in the link. A single run (Figure 2) uses these
models to run a communication task and outputs data files
of message transfer logs. From these log files, one-way and
round trip flit latency, throughput and link capacitance activity
factors are extracted. Intacte is then used to obtain the final
power numbers for different operating frequency and supply
voltage options. Table I summarizes the various parameters
that can be varied in the framework.

A. NoC Elements

1) Traffic Generation and Distribution Models (PE): To
test NoCs on realistic multi-core applications we setup traffic
generation and distribution to mimic various communication
patterns. We support Request-Response (RR) and One-Way
Traffic (OWT) generation. For example in multi-core chips,
the former can correspond to activities like cache line loads
and the latter can correspond cache line write backs.Traffic
distribution input is given using two matrices of sizes N×N,
where N is the number of communicating entities. Item (i, j)

Fig. 2. Flowchart depicting simulation steps.

TABLE I
ICN EXPLORATION FRAMEWORK PARAMETERS.

Parameter Description
NoC Parameters

Routing Algorithms Source Routing and Table based routing
Switching Policy Packet, Circuit, Wormhole, VC switching
Traffic Paradigm Request-Response & One-Way Traffic

Traffic Generation Scheme Deterministic, Self-Similar
Traffic Distribution Scheme Deterministic, Uniformly random

HotSpot, Localized, First Matrix Transpose
Router Microarchitecture

No. of Input/Output Ports 2-8 (based on topology to be generated)
Input/Output buffer sizes Flit-level buffers

Crossbar Switching capacity In terms of flits (default=1)
Link Microarchitecture

Length of interconnect Longest link in mm
Bit width of the interconnect

Circuit Parameters
Frequency, Supply Voltage

in a matrix gives the probability of communication of PE i
with j in the current cycle. Two separate matrices correspond
to Request-Response (RR) and One-Way traffic (OWT) gen-
eration. The probability of choosing among the two matrices
depends on a global input to decide the percentage of RR
traffic to be generated for the simulation run. This model can
be further expanded to capture burst characterisitics as well as
message size and is something we plan to add in the future.
The communication packets are broken into a sequence of
Flit transfers. The Flit header format is shown in Figure 3.
The SQ field is used to identify in order arrival of all flits.
Response flits have first 2 bits set to 11. SRCID, DSTID and
FlitID fields are preserved in Response flit for the sake of
error checking and latency calculations in the framework. The
traffic receiver will read the header to determine if the flit
type is RR or not (flag RQ). If RQ is set, then the Traffic

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 31

Fig. 3. Flit header format. DSTID/SRCID: Destination/Source ID,
SQ:Sequence Number, RQ & RP: Request and Response Flags and a 13
bit flit id.

TABLE II
TRAFFIC GENERATION/DISTRIBUTION MODEL AND EXPERIMENT SETUP.

Parameter Values
Communication Patterns DLA Traffic SLA Traffic

NoCs Simulated 2D Mesh, Torus and Folded Torus
Localization Factor 0.7 0.5

Traffic injection rate 20%
RR Factor 0.03 0.1

Size of phit (Wire width) 32 bits
OW and RR Request Flit 1 flit (2 phits)

RR Response Flit 3 flits (6 phits)
Simulation Time 40000 cycles

Process 45nm
Environment Linux (2.6.8-24.25-default)+

OSCI SystemC 2.0.1 +
Matlab 7.4

generator is notified and the flit header is sent to the Traffic
generator. RR traffic has priority over OW traffic and hence the
request will be immediately serviced (without breaking an OW
flit). Response flit to the request flit has RP set and RQ reset.
In a received flit, if RQ is not set, then no action is taken.
Table II lists out parameters used in our traffic model and
in experiments. The framework is also capable of generating
Deterministic, Uniformly Random, Hotspot and First Matrix
Transpose traffic distributions.

2) Router Model: The router model is a parameterized,
scalable module of a generic router [7]. Router microarchi-
tecture parameters include number of Input/Output ports, sizes
of input/output buffers, switching capacity of the crossbar (no.
of bits that can be transfered from input to output buffers in
a cycle) etc (Table I). Flow control is implemented through
sideband signals [13].

B. Power Model

Intacte [10] is used for interconnect delay and power esti-
mates. Design variables for Intacte’s interconnect optimization
are wire width, wire spacing, repeater size and spacing, degree
of pipelining, supply (Vdd) and threshold voltage (Vth). Activ-
ity and coupling factors are input to Intacte from the System-C
simulation results. Intacte arrives at a power optimal number of
repeater, sizes and spacing for a given wire to achieve a desired
frequency. The tool also includes flop and driver overheads
for power and delay calculations. Intacte outputs total power
dissipated including short circuit and leakage power values.
We arrive at approximate wire lengths using floorplans. Other
physical parameters are obtained from Predictive Technology
Models [15] models for 45nm.

Power consumed by routers have not been included in the
results presented in the paper and will be added in the future.

Fig. 4. Schematic of 3 compared topologies (L to R: Mesh, Torus, Folded
Torus). Routers are shaded and Processing Elements(PE) are not.

However we can still draw some useful conclusions about
those aspects of the ICN design which relate to the links like
the degree of pipelining and optimal toplogy.

III. SIMULATION AND RESULTS

We study a 4x4 multi-core platform for three different
network topologies of Mesh, Torus and Folded-torus. We
use two communication patterns from [12] of Dense Linear
Algebra (DLA) and Sparse Linear Algebra (SLA) benchmarks.
DLA applications exhibit highly localized communication.
The traffic model for DLA generates 70% traffic to immediate
neighbors and remaining traffic is distributed uniformly to
other nodes. SLA communication is reproduced using 50%
localized traffic and rest of the traffic is destined to half of
the remaining nodes. Further we assume all RR traffic to be
localized. For eg. 10% of generated traffic over the simulation
per PE will be of Request type if RR=0.1. All Request flits
are destined to immediate neighbors. 70% of flits generated
by any PE over the simulation time are destined to immediate
neighbors if localization factor is 0.7(as in case of DLA).

Experiments are designed to calculate latency (clock cy-
cles), throughput (Gigabits/sec) and power (milliWatts) of
various topologies. Table II lists some of the simulation setup
parameters used in the following experiments.

A. NoC Topologies

In this work we consider three similar topologies for tradeoff
studies. Router and processing elements are identical in all
three topologies. In fact the same communication trace is
played out for all the different ICN parameter explorations.
The schematic of the three NoCs is shown in Figure 4 with
the Floorplans largely following the schematics. The floorplans
are used to estimate the wire lengths which are then input to In-
tacte. Processing elements sizes are estimated by scaling down
the processor in [16] to 45nmto be of size 2.25×1.75mm. The
routers are of size 0.3×0.3mm. The length of the longest links
in the Mesh, Torus and Folded Torus are estimated as 2.5mm,
8.15mm and 5.5mm respectively. The longest link in the torus
connect the routers at the opposite sides. The routing policy
for all topologies is table based. Routing tables are populated
such that longer links have minimum activity. Lengths of links
in each of the topologies and pipelining factors is illustrated
in Table III. Pipelining factor corresponds to the longest link
in the NoC. Pipelining factor of 1 means the longest link is

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 32

unpipelined, P=2 indicates it has a two cycle latency and so
on.

TABLE III
LINKS AND PIPELINING DETAILS OF NOCS

Topology Length in mm Pipelining
(no. of links)

2D Mesh 2.5 (24) 1 2 3 4 5 6 7 8
2.0 (56) 1 2 3 4 4 5 6 7

2D Torus 8.15(8) 1 2 3 4 5 6 7 8
6.65(8) 1 2 3 4 4 5 6 7
2.5 (24) 1 1 1 2 2 2 3 3
2.0 (56) 1 1 1 1 2 2 2 2

Folded 5.5 (16) 1 2 3 4 5 6 7 8
2D Torus 4.5 (16) 1 2 3 4 5 5 6 7

2.75(16) 1 1 2 2 3 3 4 4
2.25(16) 1 1 2 2 3 3 3 4
2.0 (32) 1 1 2 2 2 3 3 3

B. Round Trip Flit Latency & NoC Throughput

Round trip flit latency is calculated starting from injection
of the first phit (physical transfer unit in an NoC) to the
reception of the last phit. In the case of OW traffic latency
is one way. In case of RR traffic it is the delay in clock
cycles of beginning of request injection to completion of
response arrival. Communication traces are analysed using
error checking (for phit loss, out-of-order reception, erroneous
transit etc.) and latency calculation scripts to ensure functional
correctness of the system.

Total throughput of the NoC (in bits/sec) is calculated as
total number of bits received ((flitr ∗ bitsflit)) at sink nodes
divided by total (real) time ((1

f ∗ simcycles)) spent (Eqn 1).

Thtotal =
flitr ∗ bitsphit
1
f ∗ simcycles

(1)

Max achievable frequency of a wire of given length is
obtained using Intacte(Figure 5). Max throughput of each NoC
running DLA traffic at P=1 is shown in Figure 6.2D Mesh has
the shortest links and highest achievable frequency and hence
the highest throughput.

Average round trip latencies in nano-seconds over various
pipeline configurations in all 3 NoCs is shown in Fig. 7.
Results show overall latency of flits actually decrease to
a certain point by pipelining. Avg. latencies are larger for
RR type of traffic and it also has a larger number of flits
involved (1 Req + 3 Response). Clearly, there is a latency
advantage by pipelining links in NoCs upto a point. This is
because as the number of pipe stages increase, the operation
frequency can also be increased as the length of wire segment
in each pipe stage decreases. Real time latencies do not vary
much after pipelining configuration P=5, as delay of flops
start to dominate and there is not much marginal increase in
frequency. Throughput and Latency behaviour for SLA traffic
are identical (not shown here).

C. NoC Power/Performance/Latency Tradeoffs

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

M
ax

. F
re

qu
en

cy
 (

in
 G

H
z)

Pipeline stages

DLA Traffic. Max Attainable Frequency vs. Pipeline configurations on 3 NoCs.

2D Mesh. Max. Len: 2.5mm
2D Torus. Max. Len: 8.15mm

Folded 2D Torus. Max. Len: 5.5mm

Fig. 5. Max. frequency of links in 3 topologies. Lengths of longest links in
Mesh, Torus and Folded 2D Torus are 2.5mm, 8.15mm and 5.5mm.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8

M
ax

. T
hr

ou
gh

pu
t (

in
 G

ig
ab

its
/s

ec
)

Pipeline stages

DLA Traffic. Max Throughput vs. Pipeline Stages.

2D Torus. Max. Len: 8.15mm
Folded 2D Torus. Max. Len: 5.5mm

2D Mesh. Max. Len: 2.5mm

Fig. 6. Total NoC throughput in 3 topologies, DLA traffic.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8

A
vg

. R
ou

nd
 T

rip
 L

at
en

cy
 (

in
 n

s)

Pipeline Depth

DLA Traffic: Avg. Round Trip Latency vs. Pipeline Depth in 3 NoCs

Mesh OWT
Mesh Req-Resp

Torus OWT
Torus Req-Resp

Folded Torus OWT
Folded Torus Req-Resp

Fig. 7. Avg. round trip flit latency in 3 NoCs, DLA traffic.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t(

*7
11

.1
8

G
bp

s)
, P

ow
er

(*
55

.1
8

m
W

),
 E

ne
rg

y
&

 E
ne

rg
y

D
el

ay

A
vg

. R
ou

nd
 T

rip
 L

at
en

cy
 (

N
or

m
al

iz
ed

)
(O

W
T

: *
1.

73
ns

, R
R

: 4
.7

2n
s)

Link Pipeline Depth

DLA Traffic: 2D Mesh NoC Power/Performance/Latency Tradeoffs

Latency

Throughput

NoC Power

Energy

Energy.Delay

Fig. 8. 2D Mesh Power/Throughput/Latency tradeoffs for DLA traffic.
Normalized results are shown.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t(

*9
0.

8
G

bp
s)

, P
ow

er
(*

78
.3

4
m

W
),

 E
ne

rg
y

&
 E

ne
rg

y
D

el
ay

A
vg

. R
ou

nd
 T

rip
 L

at
en

cy
 (

N
or

m
al

iz
ed

)
(O

W
T

: *
2.

11
ns

, R
R

: *
4.

66
ns

)

Link Pipeline Depth

SLA Traffic: 2D Mesh NoC Power/Performance/Latency Tradeoffs

Latency

Throughput

NoC Power

Energy

Energy.Delay

Fig. 9. 2D Mesh Power/Throughput/Latency tradeoffs for SLA traffic.

1) 2D Mesh: Figure 8 and 9 shows the combined normal-
ized results of NoC power, throughput and latency experiments
on a 2D Mesh for DLA and SLA traffic. Throughput and
power consumption are lowest at P=1 and highest at P=8.
Normalized avg. round trip flit latency for both OW and RR
traffic is shown (the curves overlap). From the graph it is
seen that growth in power makes configurations more than
P=5 less desirable. Link pipelines with P=1,2 and 3 are also
not optimal with respect to latency in both these benchmarks.
Rise in throughput also starts to fade as configuration of more
than P=6 are used. The optimal point of operation indicated
by the results from both communication patterns is P=5.
Energy curve is obtained as the product of normalized Latency
and Power values. Energy for communication increases with
pipeline depth. Energy Latency (Energy.Delay) is the product
of Energy and Latency values. Quantitatively the optimal point
for operation is when the longest link has pipeline segments
(P=5). In DLA traffic, Avg. round trip flit latency of flits in the
NoC is 1.23 times minimum and 32% of maximum possible.
NoC power consumed is 57% of max and throughput 80.5%

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

 1

 2

 3

 4

 5

 6

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t(

*2
06

.2
3

G
bp

s)
, P

ow
er

(*
27

.2
6

m
W

),
 E

ne
rg

y
&

 E
ne

rg
y

D
el

ay

A
vg

. R
ou

nd
 T

rip
 L

at
en

cy
 (

N
or

m
al

iz
ed

)
(O

W
T

: *
2.

98
nS

, R
R

: *
8.

8n
s)

Link Pipeline Depth

DLA Traffic: 2D Torus NoC Power/Performance/Latency Tradeoffs

Latency

Throughput

NoC Power

Energy

Energy.Delay

Fig. 10. DLA Traffic, 2D Torus Power/Throughput/Latency tradeoffs.
Normalized results are shown.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t(
*2

14
.9

8
G

bp
s)

, P
ow

er
(*

28
.3

3
m

W
),

 E
ne

rg
y

&
 E

ne
rg

y
D

el
ay

A
vg

. R
ou

nd
 T

rip
 L

at
en

cy
 (

N
or

m
al

iz
ed

)
(O

W
T

: *
2.

04
ns

, R
R

: *
5.

36
ns

)

Link Pipeline Depth

DLA Traffic: Folded 2D Torus NoC Power/Performance/Latency Tradeoffs

Latency

Throughput

NoC Power

Energy

Energy.Delay

Fig. 11. DLA Traffic, Folded 2D Torus Power/Throughput/Latency tradeoffs.
Normalized results are shown.

of max possible value.
2) 2D Torus and Folded 2D Torus: Similar power, through-

put and latency tradeoff studies are done on both communica-
tion patterns on 2D Torus (Fig. 10) and Folded 2D Torus (Fig.
11) NoCs. Results obtained in 2D Torus experiments indicate
that growth in power makes configurations more than P=5
is not desirable. Latencies of flits in pipeline configurations
P=1-4 are large. Rise in throughput also starts to fade as con-
figurations after P=5 are used. The optimal point of operation
indicated by the Energy Delay curves in both DLA and SLA
traffic (not shown here) for 2D Torus is P=5. In DLA traffic,
this configuration shows power consumed by the NoC is 50%
of the value consumed at P=8 and throughput is 70.5% the
max value. Avg. Round Trip latency of flits for both OW &
RR traffic is 1.4 times minimum and 24% of the maximum
(when P=1).

Tradeoff curves for the Folded 2D Torus show similar trends
as in the 2D Torus. Avg. round trip flit latency reduction
and throughput gain after P=6 is not considerable. There is
no single optimum obtained from the Energy Delay curve.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 34

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500

N
oC

 P
ow

er
 C

on
su

m
pt

io
n

(in
 m

W
)

Throughput (in Gbps)

DLA Traffic. NoC Power Consumption vs. Throughput over 3 NoCs.

Folded 2D Torus

2D Torus

2D Mesh

2D Mesh. P=4
2D Mesh. P=5
2D Torus. P=7
2D Torus. P=8

Folded 2D Torus. P=6
Folded 2D Torus. P=7

Fig. 12. Frequency scaling on 3 topologies, DLA Traffic.

Pipeline configurations from P=5 to P=7 present various
throughput and energy configurations for approximately same
Energy Delay product.

D. Power-Performance Tradeoff With Frequency Scaling

We discuss the combined effects of pipelining links and
frequency scaling on power consumption and throughput of
the 3 topologies (Figure 4) running DLA traffic. Maximum
possible frequency of operation at full supply voltage (1.0V)
is determined using Intacte.

Figure 12 shows NoC power consumption for 3 example
topologies over a pair of pipelining configurations along with
frequency scaling (at Vdd). As observed from the graph, power
consumption of a lower pipeline configuration exceeds the
power consumed by a higher configuration after a certain fre-
quency. Larger buffers (repeaters) are added to push frequen-
cies to the maximum possible value. Power dissipated by these
circuit element start to outweigh the speed advantage after a
certain frequency. We call this the “crossover” frequency. The
graph shows 3 example pairs from each NoC from each of the
topologies to illustrate this fact.

Maximum frequency of operation of an unpipelined longest
link in a 2D Mesh (2.5mm) is determined to be 1.71GHz.
This maximum throughput point is determined in each pipeline
configuration in each topology. Frequency is scaled down
from this point and power measurements are made for NoC
activity obtained using the SystemC framework for DLA
traffic.At crossover frequencies it is advantageous to switch
to higher pipelining configurations to save power and increase
throughput. For example in a 2D Mesh, link frequency of
3.5GHz can be achieved by pipelining configuration of 3 and
above. NoC power consumption can be reduced by 54% by
switching to a 3 stage pipeline configuration from 8 stage
pipeline configuration.In other words, a desired frequency can
be acheived by more than one pipeline configuration. For
example, in a 2D Torus frequency (throughput) of 2.0GHz can
be achieved by using pipeline configurations from 4 to 8. NoC
power consumption can be reduced by 13.8% by switching

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160 180

N
oC

 P
ow

er
 C

on
su

m
pt

io
n

(in
 m

W
)

Throughput (in Gbps)

2D Mesh NoC Power/Performance/Latency Tradeoffs using Voltage & Frequency Scaling

Frequency Scaled, P=8
Voltage scaled: P=2
Voltage scaled: P=5
Voltage scaled: P=7

Fig. 13. Dynamic voltage scaling on 2D Mesh, DLA Traffic. Frequency
scaled curve for P=8 is also shown.

TABLE IV
DLA TRAFFIC, FREQUENCY CROSSOVER POINTS IN 2D MESH

Pipe Trip Frequency (in GHz)
Stages Mesh Torus Folded Torus

1-2 1.7 0.25 0.45
2-3 2.96 0.7 1.5
3-4 3.93 1.1 2.0
4-5 4.69 2.0 2.76
5-6 5.31 2.2 3.2
6-7 5.83 2.8 3.69
7-8 6.23 3.0 4.07

from P=8 to P=4 and still achieve similar throughput.

E. Power-Performance Tradeoff With Voltage and Frequency
Scaling

In each topology, frequency is scaled down from the
maximum and the least voltage required to meet the scaled
frequency is estimated using Intacte and power consumption
and throughput results are presented. Voltages are scaled from
1.0V till 0.1GHz is met for each pipelining configuration in
each NoC.Similar to the frequency scaling results there exists
a crossover frequency in a pipelining configuration after which
it is power and throughput optimal to switch to a higher
pipelining stage (Table IV).Figure 13 compares Power and
Throughput values obtained by voltage and frequency scaling
with a frequency scaled P=8 curve for 2D Mesh with DLA
traffic. Scaling voltage along with frequency compared to
scaling frequency alone can result in power savings of upto
14%, 27% and 51% in cases of P=7, P=5 and P=2 respectively.

Comparison of all 3 NoCs is presented in Table V.

IV. CONCLUSION

Consideration of low level link parameters like pipelining,
bit widths, wire pitch, supply voltage, operating frequency etc,
along with the usual architectural level parameters like router
type, topology etc., of an ICN enables better optimization of
the SOC. We are developing such a framework in System-C

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 35

TABLE V
COMPARISON OF 3 TOPOLOGIES FOR DLA TRAFFIC.

Topology Pipe Power Performance
Stages (mW) (Gbps)

Mesh 1 55.18 42.82
2 109.87 74.12
4 250.83 117.44
7 464.16 156.00

Torus 1 27.26 14.67
2 45.71 27.89
4 97.48 50.78
7 206.22 78.33

Folded 1 28.32 21.03
Torus 2 55.95 39.31

4 119.75 69.11
7 287.18 101.91

since it can allow co-simulation with models for the commu-
nicating entities along with the ICN.

Preliminary studies on a small 4x4 multi-core ICN for
three different topologies and two different communication
patterns indicate that there is an optimum degree of pipelining
of the links which minimizes the average communication
latency. There is also an optimum degree of pipelining which
minimizes the energy-delay product. Such an optimum exists
because increasing pipelining allows for shorter length wire
segments which can be operated either faster or with lower
power at the same speed.

We also find that the overall performance of the ICNs is
determined by the lengths of the links needed to support the
communication patterns. Thus the mesh seems to perform
the best amongst the three topologies we have considered in
this study. This opens up interesting research opportunities
for reconfigurable ICNs with heterogenous links which can
support different patterns efficiently.

It also points to an overall optimization problem that exists
in the architecture of the individual PEs versus the overall
SOC, since smaller PEs lead to shorter links between PEs,
but more traffic, thus pointing to the existence of a sweet spot
in terms of the PE size.

ACKNOWLEDGMENT

We thank Shailesh Kulkarni for help with the initial devel-
opment of this framework. We acknowledge funding support
from Texas Instruments, India.

REFERENCES

[1] T. Kogel et. al., “A modular simulation framework for architectural
exploration of on-chip interconnection networks,” in Proc. of, Hard-
ware/Software Codesign and System Synthesis, 2003 (CODES+ISSS’03).
Intl. Conf. on, pp. 338–351, Oct. 2003.

[2] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A power-
performance simulator for interconnection networks,” in Proc. of, MI-
CRO 35, 2002.

[3] P. Gupta, L. Zhong, and N. K. Jha, “A high-level interconnect power
model for design space exploration,” in Proc. of, Computer Aided Design
(ICCAD ’03). Intl. Conf. on, pp. 551–558, 2003.

[4] K. Lee, S.-J. Lee, and H.-J. Yoo, “Low-power network-on-chip for
high-perforamance soc design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, pp. 148–160, Feb. 2006.

[5] S. E. Lee, J. H. Bahn, and N. Bagherzadeh, “Design of a feasible on-chip
interconnection network for a chip multiprocessor (cmp),” in Proc. of,
Computer Architecture and High Performance Computing. Intl. Symp.
on, pp. 211–218, 2007.

[6] F. Karim et. al., “An interconnect architecture for networking systems
on chips,” IEEE Micro, vol. 22, pp. 36–45, Oct. 2002.

[7] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance
evaluation and design trade-offs for network-on-chip interconnect archi-
tectures,” IEEE Transactions on Computers, vol. 54, pp. 1025–1040,
Aug. 2005.

[8] R. Balasubramonian, N. Muralimanohar, K. Ramani, and V. Venkatacha-
lapthy, “Microarchitectural wire management for performance and power
in partitioned architectures,” in Proc. of, High-Performance Computer
Architecture. HPCA-11. 11th International Symposium on, pp. 28–39,
Feb. 2005.

[9] A. Courtey, O. Sentieys, J. Laurent, and N. Julien, “High-level intercon-
nect delay and power estimation,” Journal of Low Power Electronics,
vol. 4, pp. 1–13, 2008.

[10] R. Nagpal, M. Arvind, Y. N. Srikanth, and B. Amrutur, “Intacte: Tool
for interconnect modelling,” in Proc. of 2007 Intl Conf. on Compil-
ers, Architecture and Synthesis for Embedded Systems(CASES 2007),
pp. 238–247, 2007.

[11] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in multi-
core architectures: Understanding mechanisms, overheads and scaling,”
in Proc. of, Computer Architecture. ISCA ’05. 32nd International Sym-
posium on, pp. 408–418, 2005.

[12] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” Tech. Rep. UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[13] http://www.ocpip.org/socket/systemc/, “Ocp-ip, systemc ocp models.”
[14] http://www.systemc.org/, “Open systemc initiative.”
[15] http://www.eas.asu.edu/∼ptm/, “Predictive technology models.”
[16] G. Konstadinidis et. al., “Implementation of a third generation 16-

core, 32-thread, cmt sparc processor,” in ISSCC ’08: Processor of the
International Solid-State Circuits Conference, pp. 84–85, IEEE, 2008.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 36

Application Specific Buffer Allocation for Wormhole
Routing Networks-on-Chip

Wang Liwei1, Cao Yang1,2, Li Xiaohui1, Zhu Xiaohu1

1School of Electronic Information
2State Key Laboratory of Software Engineer

Wuhan University
Wuhan, China

wangliwei@mail.whu.edu.cn, caoyang@whu.edu.cn

Abstract—A buffer allocation algorithm for wormhole routing
networks-on-chip was proposed. When the total budget of the
available buffering space is fixed, the proposed algorithm
automatically assigns the buffer depth for each input channel,
in different routers across the chip, according to the traffic
characteristics of the target application. The simulation results
show that the buffer allocation result is more reasonable and
lower average packet latency can be achieved compared to the
uniform buffer allocation.

I. INTRODUCTION
As technology scales and chip integrity grows, on chip

communication is playing an increasing dominant role in
System-on-Chip (SoC) design. The NoC approach was
proposed as a promising solution to complex intraSoC
communication problems[1-3]. It consists of a grid of nodes
where each node can be a SoC, an IP, a DSP, etc. Compared
to traditional bus interconnection architecture, NoC is much
more extensible and parallelizable.

Fig. 1 shows a 4×4 2D mesh NoC which consists of 16
nodes and a typical router architecture. There are buffers at
every input channels of router which significantly affect the
system performance.

Compared to a computer-network, an on-chip network is
much more resource limited. In order to minimize the
implementation cost, the interconnection network should be

buffer buffer

bu
ff

er
bu

ff
er

N
or

th

EastWest

So
ut

h

buffer

Local

PE

(0,1)

(0,0)

(0,2)

(0,3)

(1,1)

(1,0)

(1,2)

(1,3)

(2,1)

(2,0)

(2,2)

(2,3)

(3,1)

(3,0)

(3,2)

(3,3)

Figure 1. Block diagram of 4X4 mesh-based NoC

implemented with very little area overhead. In a packet
switched network, the route processing logic occupies only a
small portion of area(about 6.6%) in each router[2], but the
input buffers take a significant one[6], consequently, their
size should be carefully minimized.

Wormhole routing is one of the most popular switching
techniques in NoC and it’s more suitable for implementing
NoCs compared to store-and-forward and virtual cut-through
switching[4,5]. In wormhole switching, a data packet
(message) is divided into small flits for transmission and
flow control. The header flit governs the route of the packet
and the reaming data flits follow it in a pipeline fashion.
When the header flit is blocked due to contention for output
channels or due to insufficient buffer space, all other data
flits wait at their current nodes forming a chain of flits that
spans over multiple nodes. Wormhole switching makes the
end-to-end delay insensitive to the packet destination due to
the pipelining of flits, and routers require only small amount
of buffer space.

II. RELATED WORK
The input buffer size significantly affects system

performance, area and power consumption of NoC.
Traditionally, all input channels of every router are assigned
with the same amount of buffer. But because of the
imbalance of the traffic pattern in most real NoCs, uniform
buffer size allocation may not be the most effective way to
use the silicon area. To utilize buffering resources more
efficiently, one better buffer allocation way is to allocate the
buffer size according to the traffic pattern of the target
application, allocate more buffering resources only to the
heavy loaded channels. Therefore, the buffer allocation
problem of NoC can be described as: under total buffering
resources constraints, calculate the buffer size of each input
channel to minimize the average packet latency of NoC[6].

To solve buffer allocation problem, it is necessary to
evaluate the NoC performance. Traditional work on
performance evaluation uses either simulation[11] or
analytical models[7,8,12,13]. The network simulation
method is straight and easy to understand, but time

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 37

consuming, while using analytical model is more suitable to
solve buffer allocation problem. In[13], a wormhole-based
mesh network is modeled as a closed queuing network to
calculate the average packet latency, but it can apply only to
networks with single-flit buffers. In[7,12], two analytical
models are proposed, but it can apply only to networks with
infinite buffers. In[8], a analytical model for networks with
finite buffers is proposed, but it’s constrained to uniform
traffic conditions.

In[9-10], the authors present two dynamic buffer
allocation methods, their main idea are similar: all buffering
resources in a router are placed together as a buffer pool,
when there is a data packet enter the input channel, some
amount of buffering resources are assigned to store this
packet temporally; after the packet leave the router, those
buffers are released to buffer pool in case for the next use.
Dynamic allocation can not solve buffer allocation problem
if the size of buffer pool is not big enough.

In[6], the authors describe and provide an efficient way
to solve the buffer allocation problem for NoC designs which
use store-and-forward or virtual cut-through switching for
the first time based on the queuing theory. But in most NoC
designs, the wormhole switching is more suitable. In this
paper, we study the buffer allocation in wormhole routing
NoCs.

III. BUFFER ALLOCATION ALGORITHM
First, a wormhole router analytical model is presented.

Using this model, the system performance bottleneck among
the different channels can be detected. In this paper,
performance bottleneck is defined as such an input channel
which owns the FIFO that has the highest probability to be
“full”. After finding the system performance bottleneck, the
buffer allocation algorithm iteratively adds extra buffering
space to the bottleneck channels until the total buffer budget
is reached, which leads to the maximum improvement in
performance.

A. The wormhole router analytical model
The model in this paper is based on the following

assumptions, which are commonly used in similar
studies[6-8,12,13].

i. Nodes generate traffic independently of each other,
and according to a Poisson process.

ii. NoC uses XY routing algorithm.

iii. Packet length is fixed at M flits. Each flit takes one
cycle to advance from one to the next. Buffer width
equals to the bit widths of a flit.

iv. The local queue at the injection channel in the
source node has infinite capacity; moreover, packets
are transferred to the local PE as soon as they arrive
at their destinations through the ejection channel.

The basic parameters used in this paper are summarized
in Table I.

TABLE I. PARAMETER NOTATION

Param. Description

M The size of a data packet (M flits)

HT The time needed by a router to process the header flit

dir Direction, i.e.：North, East, South, West, Local

, ,x y dirb The probability of the buffer at dir input channel of
Node(x,y) being full

, ,x y dirρ The utilization factor of dir input channel at Node(x,y)

, ,x y dirλ The packet arrival rate at dir input channel of Node(x,y)

, ,x y dirμ The packet service rate at dir input channel of Node(x,y)

, ,x y dirl The buffer size of (x,y) dir input channel at Node(x,y)

,x ya The packet injection rate of Node(x,y)

(,)(', ')x y x yd The probability of a packet generated by Node(x,y) to be
delivered to Node(x’,y’)

, ,x y dirT The packet service time at dir input channel of Node(x,y)

, ,x y dirTB The blocking delay at dir input channel of Node(x,y)

, ,x y dirθ The probability of a packet get blocked at the head of dir
input channel of Node(x,y)

, ,x y dirω The mean waiting time that a packet needs to wait in the
event of blocking

', ,dir dirx yλ →
The packet arrival rate which is forwarded from dir input

channel to dir’ input channel of Node(x,y)
Resorting to the theory of finite queuing networks[15],

every input channel buffer can be modeled as a M/M/1/K
finite queue. Therefore, the probability of the buffer at dir
input channel of Node(x,y) being full can be calculated using
the following equations:

, ,

, , , ,
, ,

, , 1
, ,

1

1
x y dir

x y dir x y dir

lx y dir
x y dir l

x y dir

b ρ
ρ

ρ +

−
= ×

−
 (1)

, , , , , ,
, ,

, ,
x y dir x y dir x y dir

x y dir

x y dir

Tρ λ
λ
μ

= = × (2)

The packet arrival rate at dir input channel of Node(x,y)
can be calculated with the following equation:

, , (,)(', '),
, ', '

(, , ', ', , ,)x y dir j k j kj k
j k j k

da j k j k xλ
∀ ∀

= × ×ℜ y dir∑∑ (3)

In (3), the (, , ', ', , ,)j k j k x y dirℜ is the routing function, it
equals 1 if the packet from Source Node(j,k) to Destination
Node(j’,k’) uses the dir channel of Node(x,y); it equals 0
otherwise. In this paper, we use XY deterministic routing
algorithm, it’s easy to calculate , ,x y dirλ according to the
Eq.(3).

B. Calculation of the packet service time
The packet service time at dir channel of Node(x,y) is

given by

x, , , ,y dir H x y dirT T M TB= + + (4)

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 38

In (4), represents the service tim
router without contention; when there is a contention, the

HT M+ e per packet in a

waiting time that a packet needs to wait in a buffer can be
modeled by , ,x y dirTB . In[8], the authors present a method to
calculate this blocking delay:

,, , , , ,x yx y dirTB θ= dir x y dirω× (5)

In (5), , ,x y dirθ represents the probabilit
get blocked at the head of the buffer due to the contention for

 outp

y that a packet may

the same ut channel; , ,x y dirω represent the mean waiting
time that a message needs to wait in the event of blocking.

C. Calculation of the mean waiting time
To determine the mean waiting time, each router is

re the arrival rate
is
treated as an M/M/1 queuing system whe

, ,x y dir , the packet service time is , ,λ x y dirT . Resorting to the
queuing theory[15], the mean waiting time becomes

, ,

2
, , , , , ,

x y dir
, , , , , , , , , ,() 1

x y dir x y dir x y dir

x y dir x y dir x y dir x y dir x y dirTμ μ λ λ− − ⋅
 (6)

D. Calculation of the blocking probability

For conve

T
ω

λ λ ⋅
= =

nience, we use dirθ to represent , ,x y dirθ . First, we
Matrixhav inge to calculate the Forward Probability (FPM) F

0
0

0
0

0

NE NS NW NL

EN ES EW

SN SE SW SL

WN WE WS WL

LN LE LS LW

F
EL

f f f f
f f f f
f f f f
f f f f
f f f f

= ⎢
⎢
⎢
⎢⎣

, where

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎥
⎥
⎥
⎥⎦

i j
ij

i

f
λ
λ
→= (7)

In (7), ijf is the probability that a packet arrives at dir i and

ing

as an example.

In (8),

leaves the router through dir j. Every elements of the
forward probability matrix F can be calculated using
Equation (3).

Now let us calculate the blocking probability and use
North direction

N NDir NDir
Dir

fθ θ
∀

= ⋅∑ (8)

NDirf is the forwarding probabi
while is the probability that a packet fo

y ge

Dir Dir N∀ ≠

Combining Eq.(7), Eq.(8) and Eq.(9) togethe

lity of N Dir→ ,

ND

to Dir ma t blocked.

'NDir NDir Dir Dirf fθ = ⋅ ∑ (9)

irθ rwarded from N

', '

r, , ,x y dirθ can be

calculated. Combining , ,x y dirθ , Eq.(6), Eq.(5) and E 4), we

, ,

q.(

can finally build a nonlinear equation about x y dir

, ,

T , this

equation can be solved to determine x y dir

, ,

T . Combining

x y dirT , Eq.(1) and Eq.(2), we can cal , ,culate x y dirb and
the system performance bottleneck.

E. The buffer allocation algorithm

detect

In this paper, we propose a gre
this

edy algorit ve hm to sol
 problem based on the aforementioned analytical model.

The flow of the algorithm is shown in Fig. 2.
1) Given the system parameters(such as HT , M , size of

esM h and total buffer budget) and traffic parame (such
as ,

ters
x ya and (,)(', ')x y x yd)，the algorithm (written in C++) can

calculate , ,x y dirλ , F and , ,x y dirθ respectively using Eq.(3),
Eq.(7) an 8) and bui nonlinear equation about

, ,

d Eq.(ld a
x y dirT .

 2) The Matlab Math Library is used to solve the given
equation(more specifically, the roots utility from Matlab is
used as the nonlinear equation solver); at the same time the
algorithm also generates the initial buffer configuration
which assigns the buffer in all the used channels (, , 0x y dirλ ≠)
to be one flit large.
 3) The algorithm determine , ,x y dirb for each input
channel using Eq.(1) and select annel with the
largest , ,

the ch
x y dirb as the system performance bottleneck.

 4) buffer size of the bottleneck chan
cre

 The nel is
in mented by one flit, while the system free buffer is
decremented by one flit.
 5) Repeat (3)~(4), until system free buffer is 0.
 6) Output the final buffer allocation results.

Figure 2. The buffer allocation algorithm flow

To validate the proposed algorithm, we build a
wormhole routing NoC simulation platform with
OMNet++[14]. OMNet++ is a public source, generic and

IV. EXPERIMENT RESULT

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 39

flexible simulat s a fast and
hig

ion environment. It allow
h-level simulation environment for NoC exploration.
Some parameters used in simulation are: 16M = , a data

packet is divided into 16 flits; 2HT = , the router needs 2
clock cycle to make routing decision for the header flit; the
size of Mesh is 4, NoC is 4×4 2D Mesh; system total
buf anne

r simp

ev

fers are 240 flits, which means every used ch l is
assigned with 5 flits large buffer. Fo licity, every node
has the same packet injection rate.
 In the experiments, we applied our algorithm to
applications with two typical traffic models: uniform
random traffic model and hotspot traffic model. Under the
uniform traffic pattern, a PE sends a packet to any other
node with equal probability (this probability is 1/15
≈ 0.0666). Under hot spot traffic pattern, one or more nodes
are chosen as hot spots which receive an extra proportion of
traffic (in this paper, the probability is 0.2) in addition to the
regular uniform traffic. The efficiency of the algorithm is

aluated through latency-throughput curves. The average
packet delay is defined as the mean amount of time from the
generation of a packet until the last data flit reaches the local
PE at the destination node.
 Three hotspot traffic patterns used in this evaluation are
hotspot1, hotspot2 and hotspot3. Traffic pattern hotspot1
have only one hot spot, while hotspot2 and hotspot3 are the
hot spot traffic patterns which have two and three hot spots
respectively. In each simulation experiment, a total number
of about 80000 packets are delivered to their destinations.
To avoid the distortions due to start-up conditions, the first
10000 packets are ignored.
 In simulation results, NoCs with uniformly allocated
FIFO buffers are denoted by UNOC, and systems that
customized by our buffer allocation algorithm are denoted
by CNOC. Their average packet latency should be
compared.

0

500

1000

1500

2000

2500

3000

cy
cl

es
)

0

500

1000

1500

2000

2500

3000

0.0025 0.008 0.01 0.0113 0.0123
Packet Injection Rate(packets/cycle)

Av
er

ag
e

Pa
ck

et
 la

te
nc

y(
cy

cl
es

) UNOC

CNOC

Figure 4. Performance under hotspot1 traffic

0

500

1000

1500

2000

2500

3000

0.0025 0.008 0.01 0.0117 0.013 0.0136
Packet Injection Rate(packets/cycle)

Av
er

ag
e

pa
ck

et
 la

te
nc

y(
cy

cl
es

) UNOC

CNOC

Figure 5. Performance under hotspot2 traffic

0

500

1000

1500

2000

2500

3000

0.001 0.0075 0.0095 0.0105 0.0115
Packet Injection Rate(packets/cycle)

Av
er

ag
e

pa
ck

et
 la

te
nc

y(
cy

cl
es

)

UNOC

CNOC

0.0025 0.008 0.01 0.0115 0.015 0.0166
Packet Injection Rate(packets/cycle)

Av
er

ag
e

pa
ck

et
 la

te
nc

y(

UNOC

CNOC

Figure 3. Performance under uniform traffic

Figure 6. Performance under hotspot3 traffic

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 40

Fig. (3) shows the performance of UNOC and CNOC
under the uniform traffic. The X-axis represents the packet
injection rate per node, and the Y-axis represents the
average packet latency of the NoC. In Fig. (3), we can see
that, when packet injection rate is low(< 0.015 packets/cycle)
their performance almost the same, but CNOC is better than
UNOC. As the packet injection rate increases, network
congestion happens in both UNOC and CNOC, and the
packet latency rises dramatically, but the time that
congestion happens in CNOC is later than UNOC. CNOC
performs significantly better than UNOC when the packet
injection rate is the same. This is because after customized
by our buffer allocation algorithm, CNOC is assigned more
buffering resources at performance bottleneck channels than
UNOC, this customization makes the network average
packet latency of CNOC is lower than UNOC.

Fig. (4) shows the performance of UNOC and CNOC
under the h have only
one hot spot, which is located at Node(0,1). When packet
inje

than UNOC,
whi

implementation cost and

has lower average packet
latency than those who b ering resources are uniformly
allocated. Extending s support
ad

6
[5] L. M. Ni and P. K. rvey of wormhole routing

techniques in direct ne ran. on Computers, Vol.26,

[6] “System-level buffer

” in Proc. IEEE International Conference on Comunication,

[9]
tual channel allocation” in Proc. First International

[10]
es”, IEEE Tran on Computers,

[11]
 pp.729-738, 2000.

[13]
ing”, IEEE Tran. on

[14]

otspot1 traffic. Traffic pattern hotspot1

ction rate is low(<0.015packets/cycle) their performance
almost the same, but CNOC is better than UNOC. As the
packet injection rate increases, congestion happens in
UNOC at 0.0113 packets/cycle, while happens in CNOC at
0.012 packets/cycle. At any packet injection rate, the CNOC
performs better than the UNOC.
 Fig. (5) and Fig. (6) show the performance of UNOC
and CNOC under the hotspot2 and hotspot3 traffic. Traffic
pattern hotspot2 have two hot spots, which are located at
Node(2,1) and Node(0,2). Traffic pattern hotspot3 have
three hot spots, which are located at Node(1,1), Node(2,2)
and Node(1,3). The CNOC also performs better than the
UNOC under these two traffic patterns, the results confirm
the system behavior and conclusions discussed for uniform
and hotspot1 traffic.
 In all cases, CNOC performs much better

ch validate our buffer allocation algorithm. Comparing
Fig. (6) with Fig. (3), it is clear that the buffer allocation is
much more beneficial for hotspot3 traffic. The reason is
compared to the uniform traffic pattern, the hotspot3 traffic
pattern is more unbalanced, which makes the results of
buffer allocation much better.

V. CONCLUSION
 In order to minimize the

maximum system performance, it’s necessary to carefully
allocate buffering resources to all used channel of NoC. A
buffer allocation greedy algorithm for wormhole routing
NoC is proposed in this paper, which can automatically

assigns the buffer depth for each input channel, in different
routers, according to the traffic characteristics of the target
application. The simulation results show that the NoC
customized by our algorithm

se uff
 thi research to NoCs that

aptive routing and virtual channels will be our future
work.

REFERENCES
[1] L. Benini and G. D. Micheli, “Networks on chips: a new soc

paradigm”, Computer, Vol.35, pp.70-78, 2002.
[2] W. J. Dally and B. Towles, “Route packets, not wires: on-chip

interconnection networks” in Proc. Design Automation Conference,
Las Vegas, USA, pp.684-689, June 18-22, 2001.

[3] S. Kumar, A. Jantsch, J. P. Soininen, et al, “A network on chip
architecture and design methodology” in Proc. IEEE Symposium on
VLSI, Pittsburgh, USA, pp.117-124, Apri. 25-26, 2002.

[4] T. Bjerregaard and S. Mahadevan, “A survey of research and pratices
of network-on-chip”, ACM Computing Surveys, Vol.38, pp.71-121,
200

McKinley, “A su
tworks”, IEEE T

pp.62-76, 1993.
J. Hu, U. Y. Ogras and R. Marculescu,
allocation for application-specific networks-on-chip router design”,
IEEE Tran. on Computer-Aided Design Of Integrated Circuits And
Systems, Vol.25, pp.2919-2933, 2006.

[7] U. Y. Ogras and R. Marculescu, “Analytical router modeling for
networks-on-chip performance analysis” in Proc. Design, Automation
and Test in Europe, Nice, France, pp.1-6, 2007

[8] N. Alzeidi, M. Ould-Khaoua, L. M. Mackenzie, et al, “Performance
analysis of adaptively-routed wormhole-switched networks with finite
buffers
Glasgow, Scotland, pp.38-43, June 24-28, 2007.
R. Dobkin, R. Ginosar and I. Cidon, “QNoC asynchronous router
with dynamic vir
Symposium on Networks-on-Chip, New Jersey, USA, pp.218-218,
May. 7-9, 2007.
Y. Tamir and G. L. Frazier, “Dynamically-allocated multi-queue
buffers for VLSI communication switch
Vol.41, pp.725-737, 1992.
G. M. Chiu, “The odd-even turn model for adaptive routing”, IEEE
Tran. on Parallel and Distributed Systems, Vol.11,

[12] W. J. Dally, “Performance analysis of k-ary n-cube interconnection
networks”, IEEE Tran. on Computers, Vol.39, ppl775-785, 1990.
V. S. Adve and M. K. Vernon, “Performance analysis of mesh
interconnection networks with deterministic rout
Parallel and Distributed Systems, Vol.5, pp.225-246, 1994.
OMNet++ discrete event simulation system user manual,
http://www.omnetpp.org/, 2005.
F. Hillier and G. [15] Lieberman, Introduction to operations research. NY:
McGraw-Hill Companies, 2002.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 41

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 42

Session III

Prospective Architectural Proposals

Session Chair: Shashi Kumar, Jönköping University, Sweden

Scalable CMOS-compatible photonic routing topologies for versatile networks on chip

Alberto Scandurra and Ian O'Connor - STMicrelectronics, Italy and Lyon Institute of Nanotechnology,

France

44

Move Logic Not Data: A Conceptual Presentation

Ahmed Hemani and Muhammad Ali Shami - Royal Institute of Technology, KTH, Sweden
51

Hierarchical Agent Architecture for Scalable NoC Design with Online Monitoring Services
Alexander Wei Yin, Liang Guang, Pasi Liljeberg, Pekka Rantala, Ethiopia Nigussie, Jouni Isoaho and

Hannu Tenhunen - University of Turku, Finland

58

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 43

Scalable CMOS-compatible photonic routing
topologies for versatile networks on chip

Alberto Scandurra
On Chip Communication Systems

STMicroelectronics
Catania, Italy

alberto.scandurra@st.com

Ian O’Connor
Lyon Institute of Nanotechnology

Ecole Centrale de Lyon
Lyon, France

Ian.Oconnor@ec-lyon.fr

Abstract—1Optical network on chip (ONoC) architectures are
emerging as potential contenders to solve both physical (routing,
wire congestion) and performance (bandwidth, latency) issues in
future computing architectures. In this work, we present a
scalable and fully connected ONoC topology for multiple-core
and heterogeneous SoCs. We show that it is possible, through
careful design of network interfaces, to use the ONoC directly
with existing protocols, while still exploiting specific optical
properties and improving overall performance metrics, most
notably that of congestion.

I. INTRODUCTION

The shift to very high performance distributed Multi-
Processor Systems-on-Chip (MPSoC) as mainstream
computing devices is the recognized route to address, in
particular, power issues by reducing individual processor
frequency while retaining the same overall computing power.
This rationale answers the need for flexible and scalable
computing platforms capable of (i) achieving future required
application performance in terms of resolution (audio, video
and computing) and CPU power / total MIPS (real-time
encoding-decoding, data encryption-decryption), and (ii) of
working with multiple standards and with constrained power,
which are both particularly important for mobile applications.

However, the move to such architectures requires organized
high-speed communication between processors and therefore
has an impact on the interconnect structure. It clearly relies
upon the existence of an extremely fast and flexible
interconnect architecture, to such a point that the management
of communication between processors will become key to
successful development. Aggregated on-chip data transfer rates
in MPSoC, such as the IBM Cell processor [1], is critical and is
expected to reach over 100Tb/s in the coming decade. As such,
interconnects will play a significant role for MPSoC design in
order to support these high data rates.

At the architectural level, networks on chip (NoC)
overcome the limitations of bus-based platforms by providing
each IP block, interfaced towards the network, with one or
more reconfigurable channels of high-speed communication.
NoC architectures are based on multiple data links
interconnected by routers implementing packet switching for

1 This work was partially funded by FP7-ICT-2007-1-216405 "WADIMOS"

resource multiplexing. At the physical communication level, it
is increasingly recognized that electrical interconnect will be
highly inefficient in NoCs due to increasing power and silicon
real estate concerns. One of the main replacement technologies
currently under development consists of using integrated
optical interconnect. Besides a huge data rate, optical
interconnects also allow for additional flexibility through the
use of wavelength division multiplexing. Exploring this aspect
is necessary since it is not clear that a direct (single-
wavelength) replacement of electrical links between
switchboxes in a NoC topology by optical interconnect will
achieve a significant performance gain, since this would
require conversion between optical and electrical domains at
each switchbox. Instead, through a shift in the routing
paradigm (where the address of the target is not contained in
the data packet but rather in the wavelength of the optical
signal), it is possible to exploit this additional flexibility to
design more intelligent interconnect systems, such as passive,
wavelength-reconfigurable optical networks on chip (ONoC).

In section II we introduce the limit of classical electrical
interconnect, and the need for an alternative solution. In section
III an overview of a current NoC solution, the one developed
by STMicroelectronics, is presented. Section IV details the
architecture and principle of operation of the generic optical
network on chip structure. Finally in section V, we cover the
main communication scenarios for ONoCs.

It’s important to point out that the focus of this paper is
mainly on the topology of optical NoC, relying on the
assumption that technology and design techniques allow to
have an effective implementation of the physical layer, i.e.
emitters, detectors and transport.

II. LIMIT OF ELECTRICAL INTERCONNECT

As design rules drop below 90 nm, a variety of challenges
emerge such as RC delay, electromigration resistance, and heat
dissipation exacerbated by increased chip power. The use of
copper and thin barrier layers solves resistivity and
electromigration problems but not for long due to electron
scattering issues’ increasing the apparent resistivity. Moreover,
reliability issue with respect to an efficient diffusion barrier is a
concern. Low k dielectrics allowing capacitance reduction have
low thermal conductivity and hence poor heat dissipation

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 44

capability. Integration of copper and low k dielectrics is
intensively studied worldwide [2].

Optical interconnects seem to be an alternative solution to
overcome the issue of speed and power, providing much
greater bandwidth, lower power consumption, decreased
interconnect delays, resistance to electromagnetic interference
and reduced signal crosstalk.

Photonic materials where light can be generated, guided,
modulated, amplified and detected need to be integrated with
standard CMOS integrated circuits in order to mix the
information processing capability of electronics with the
information transmission capability of photonics, providing a
significant performance breakthrough within a cost effective
engineering.

III. NETWORK ON CHIP SOLUTION OVERVIEW

The current ST NoC solution is based on a Network on
Chip architecture called VSTNoC (Versatile STNoC), and
evolves from the STBus approach [3]. It is in fact an
interconnect system which has the same structure and
functionality as the STBus, but uses a NoC-based protocol with
appropriate interfaces and links. This approach enables higher
performances and dramatic reductions in the number of pins
and wires of the interconnect system, giving benefits in terms
of area and facilitating rapid prototyping with FPGAs.

An STBus interconnect is composed of a set of building-
blocks (nodes, converters and buffers) that can be cleanly
assembled together in order to build almost any kind of
architecture, from the simplest to the most complex one.

Figure 1. shows an interconnect built up with the
VSTNoC, where network interfaces, nodes and buffers are
used. In this figure we can see the uniformity in terms of both
protocol (type) and bus size of the network with respect to the
STBus; in fact all the required conversions are performed by
the network interfaces where required, in order to adapt
protocol, bus size and operation frequency to those of the
network.

The VSTNoC solution belongs to the topology-dependent
family. This means that, depending on the system topology (i.e.
the number and type of initiators and targets of the system), the
network topology can have different structures.

Figure 1. VSTNoC interconnect example

A. VSTNoC Protocol

The main features of the VSTNoC protocol are:
- a parametric header structure, the first field (IP_prot) of

which identifies the protocol of the IP generating the
traffic. According to the value of this field, the subsequent
fields can differ in both meaning and size, depending on
the IP native protocol;

- a NoC interface signal (aux/r_aux) carrying information
about boundaries between possible elements
characterizing different possible hierarchy levels of the IP
native protocol (i.e. packet, chunk and message in STBus
context, packet and burst in AMBA context);

- a flit identifier (flit_id) carrying information about the start
and the end of a NoC transaction (a NoC transaction is a
collection of NoC packets), determining the transaction or
arbitration granularity (AG);

- an optional field in the response path carrying information
about transaction status (r_flit_status), indicating whether
errors have occurred, and which flits are affected.

B. VSTNoC Transactions

The VSTNoC transaction consists of the transmission of
information from a traffic source to a destination according to a
format that closely follows the one of usual network packets. It
is the highest level transmission entity, marked by a start and
an end, and can be chosen equivalent to an STBus message,
chunk or even a single packet. The VSTNoC transaction is an
atomic element, i.e. it is not interruptible.

A VSTNoC transaction is composed of VSTNoC packets,
consisting of a header and a payload, the presence of which
depends on specific conditions.

VSTNoC transaction

VSTNoC packets

. . .

Figure 2. VSTNoC transaction structure

From a physical point of view, packets are split into basic
units called flits (FLow control unITs). These represent the
data link layer elements transmitted within a clock cycle in the
case of synchronous transmission, or as asynchronous entities,
the size of which is generally greater than the phyt (physical
layer element) size. However it has been chosen equal to the
phyt size in the VSTNoC context (i.e. in this work, flits and
phyts are equivalent).

The flit is chosen to be sufficiently wide so as to be able to
contain both data and byteenables transmitted over one single
STBus cell in the request path. The following tables show the
possible flit sizes that can be specified in an STNoC system for
both the request and the response path, together with the
different fields within a payload flit.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 45

TABLE I. VSTNOC INTERCONNECT EXAMPLE

Request flit field Response flit field Flit size (bits)

be data be not used r_data

36 <35:32> <31:0> - <31:0>

72 <71:64> <63:0> - <63:0>

The response flits are smaller than the request flits since in
the response path there is no need to transport the byteenables
signal, so fewer wires are required for the response interfaces.

C. VSTNoC Building Blocks

The VSTNoC communication system is based on the
following building-blocks:
- Initiator Network Interface, responsible for IP to NoC

traffic conversion and write posting response generation
- Target Network Interface, responsible for NoC to IP traffic

conversion and internal errors (security and power down)
management

- Node, responsible for buffering, arbitration, routing and
wrong address errors

- Programming Module, allowing STNoC registers
configuration

- Generic Converter, allowing to connect different NoC
domains (with different flit size and/or frequency) and/or
breaking long paths

In the next section, we will cover the description of the
Optical Network On-Chip (ONoC), based on the VSTNoC.

IV. SCALABLE ONOC ARCHITECTURE

In an ONoC communication system, information is
transmitted in the form of light, in opposition to the situation in
classical electrical NoCs where the information is transmitted
in the form of electrical charge (voltage levels on capacitors
and currents for switching between voltage levels).

Communication relies on the ISO-OSI protocol stack, and
can be seen as very close to the VSTNoC architecture, where
the physical layer is replaced with a completely new one,
exploiting optoelectronics in order to transmit information in
form of light. The aim of this work is to demonstrate effective
compatibility of the ONoC at the physical layer with the
VSTNoC protocol.

The ONoC architecture consists of five main sets of
building-blocks, as shown in Figure 3:
- Initiator Network Interface (INI): responsible for the

conversion of the traffic generated by an initiator into a
form suitable to be transmitted in form of light over the
ONoC;

- Transmitter : responsible for the actual conversion of
information from the electrical form into optical form, by
means of information encoding for minimizing the power
consumption by keeping the light emitter turned off as
much as possible, serialization, emitter selection, emitter
driving;

- λλλλ-Router (scalable passive integrated photonic routing
structure): responsible for the actual propagation of
optical information streams from sources to destinations;

- Receiver: responsible for the conversion of information
from the optical form into electrical form, by means of
photocurrent to voltage conversion, level adjustment, de-
serialization, information decoding (for power
consumption issue) and arbitration in case of multiple
access from different traffic sources;

- Target Network Interface (TNI): responsible for the
conversion of the traffic generated by the ONoC receiver
into a form suitable to be received by the target.

Notice that INI and TNI are modules belonging to the electrical
domain, while transmitter, receiver and l-router belong to the
optical domain. Because of the serialization, the flit size in the
electrical domain does not affect the optical network, but just
the required storage at buffers in the electrical domain.

ONoC Tx

•Serialization
•Emitter selection
•Emitter driving

ONoC Rx

•Detection
•Current-to-voltage conversion
•Level adjustment
•De-serialization

•Propagation

λλλλ-router

Figure 3. ONoC building blocks in optical domain

Such building-blocks can be assembled together to build
proper on-chip communication architectures.

A. Principle of operation

An N×N ONoC, from a functional point of view, has the
same behavior as an electrical N-port NoC: each initiator port
(among N) can communicate simultaneously with one (or
more, and possibly any number up to N) of N target ports. In
this work, the quantity N represents the number of IP blocks to
be connected through the communication structure; hence each
IP block sends data through an initiator port and receives data
through a target port. As previously mentioned, the ONoC is
composed of a set of N transmitters and N receivers (one for
each initiator port and target port respectively), and a scalable
passive integrated photonic routing structure (λ-router). In this
section, we will cover the principle of operation of this
architecture and present results of physical and architectural
evaluations from previous work.

Figure 4. shows an example of an 8×8 ONoC architecture.

λλλλ1
I1

I2

I3

I4

I5

I6

I7

I8

λλλλ1

λλλλ2

λλλλ3

λλλλ3

λλλλ4

λλλλ5

λλλλ5

λλλλ6

λλλλ7

λλλλ7

λλλλ8

λλλλ1

λλλλ1

λλλλ2

λλλλ3

λλλλ3

λλλλ4

λλλλ2

λλλλ5

λλλλ5

λλλλ6

λλλλ7

λλλλ7

λλλλ8

λλλλ4 λλλλ6 λλλλ8

T1

T2

T3

T4

T5

T6

T7

T8
λλλλ-router

initiator ports target ports

Figure 4. Full 8x8 ONoC topology schematic

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 46

In this representation, each initiator port Ii (∀i∈{1,2,…,8})
consists of a network interface (NI) and transmitter; and each
target port Tj (∀j∈{1,2,…,8}) consists of a receiver and NI.
Data is sent through the passive λ-router optically from each
initiator to one or more targets by selecting a specific
wavelength (for each initiator-target pair); in fact, only one
physical path associated with a single wavelength exists
between Ii and Tj. At any one time, a maximum of 8 (N)
connections can exist in the network if each transmitter is
equipped with a single, tunable-wavelength source; and a
maximum of 64 (N2) connections can exist in the network if
each transmitter is equipped with N single- wavelength
sources.

In the figure, each box containing λx represents a passive
photonic component called an "add-drop filter" which can
realize the key functionality of selecting and redirecting a
signal based on its wavelength. There are many ways of
realizing a photonic add-drop filter. In our work, we consider
the use of passive microdisk resonators as shown in Figure 5.
[3], for which the overall footprint can be considered to be
approximately 10×10µm2. Resonance in the individual
microdisks occurs whenever the wavelengths of the optical
signal carried by the neighboring waveguide corresponds to an
integer number of lobes around the circumference of the
microdisk, i.e. when the energy is distributed in the disk in
whispering gallery modes. Because of this, the resonant
wavelengths of a microdisk depend, for a given technology
(and material parameters), on the radius of the microdisk.

As shown in the figure, the switching direction depends on
the input wavelength λ and its relation to the resonant
wavelength of the add-drop filter:
• when λ=λn (within a given tolerance range depending on

the quality factor of the microdisk) the signal will couple
into the microdisk and then couple out into the waveguide
in the same plane as the input. This is the straight, or bar,
state.

• when λ≠λn the signal will propagate along the same
waveguide and outputs in a different plane to the input
according to the geometry of the waveguide. This is the
diagonal, or cross, state.

4µm

λ λ λ λ = λλλλn

λ λ λ λ ≠ λλλλn

microdisk of resonant wavelength λλλλn
λλλλn depends on:
- geometry (radius)
- material parameters (optical indices)

Si

SiO2

Figure 5. Si/SiO2 microdisk-resonator based add-drop filter

When the WDM2 technique is used, i.e. when multiple
signals of various wavelengths are injected at the input (which
is usually the case to increase the global throughput of the
network), a cumulative state occurs, where individual signals
simultaneously obey the routing characteristics of the add-drop
filter according to their individual wavelengths. Because of this
property and the fact that the four add-drop ports can be used
simultaneously, a contention-free network can be built.

The overall passive λ-router network consists of N stages
of alternately N/2 and (N/2)–1 add-drop filters (or, more
generically, routing elements). Using microdisk resonators, the
overall area required for the 8×8 passive network is around
3000µm2. The path followed by the optical signal in the overall
network shown in Figure 4. depends only on the wavelength
and can be obtained by equation (1). As an example, if the
block at initiator port I3 is to communicate with the block at
target port T5, then I3 must send data through the λ-router with
wavelength λ1. It is thus clear that each IP block can
"reconfigure" its communication paths by using different
wavelengths.

The matrix shown in equation (1) displays two interesting
properties. Firstly, it is symmetrical around both diagonals.
This means that the set of communication properties of the top
half of the network is the flipped mirror image of that of the
bottom half of the network; and that the return path for
communication is exactly the same as the transmission path.
The second noteworthy property is the existence of non-
resonant wavelengths in certain communication paths (shown
in bold in the matrix). While specific wavelengths have been
assigned in the matrix to these communication paths, any
wavelength (other than the wavelengths used by the other
communication paths) can be used. This is the case since these
communication paths do not actually pass through a routing
element corresponding to the assigned wavelength at all – they
cross the (N/2)-1 routing stages at the top or at the bottom of
the network and thus only pass through a waveguide, rather
than a resonant routing element. In the full ONoC, the unused
wavelengths are assigned to these communication paths in
order to exploit the resources – however this property can also
be exploited to reduce the number of wavelengths used [5] [6].

































































=

































8

7

6

5

4

3

2

1

4536271

5647381

3425187

6758132

2318576

7815243

1837465

1726354

8

7

6

5

4

3

2

1

I

I

I

I

I

I

I

I

T

T

T

T

T

T

T

T

λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ

λλλλλλλ

8

2

6

4

4

6

2

8

λ

λ

λ

λ

λ

λ

λ

λ

 (1)

B. Evaluated performance metrics

In prior work [6], a 4×4 passive λ-router was fabricated and
measurements show that its operation agrees with the theory.
Resonant wavelengths were measured between 1547-1583nm
for Si/SiO2 microdisks of radii from 1.0-2.5µm. The minimum

2 Wavelength Division Multiplexing

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 47

free spectral range (FSR3) was measured to be 50nm, and
quality factors around 500-800.

In parallel work, the design of a 16×16 ONoC virtual
prototype was carried out at various abstraction levels using a
top-down approach [8] from architecture to physical design,
enabling an accurate estimation of various performance
metrics. The source and detector characteristics were extracted
from III-V device data, and transistor-level interface circuits
sized with a 0.13 µm CMOS technology. In this context, the
ONoC can achieve a data rate of up to 3.2Gb/s per port with a
latency of 420ps and power consumption of 10mW per
unidirectional link. The ONoC data rate is in fact limited by the
interface circuits, mainly at the receiver. The SERDES circuits
contribute greatly to power consumption at these frequencies.

More recently in [9], the impact of the low latency and
absence of contention in the ONoC interconnect architecture
was assessed for an 8-processor SoC running an MPEG-4
algorithm. When comparing a 100MHz ONoC against
200MHz STBus [10] and 2- and 5-CCL4 crossbars, the ONoC
demonstrated speedup factors of between 1.5 and 3.2, i.e. better
performance, in terms of processing time, than any traditional
electrical interconnect, even at half the operational frequency.

V. ONOC ARCHITECTURE COMMUNICATION SCENARIOS

In this section, we cover the uses of ONoC in actual
communication scenarios.

A. Communication scenarios

The optical waveguides within the ONoC are bidirectional.
However, two-way communication between 2N IP blocks over
a single ONoC is not feasible since this would require optical
detectors and sources with identical wavelength selectivity to
lie on the same waveguide with no interaction – this is clearly
impossible. Additionally in this configuration there can be no
communication among IP blocks which have been assigned
ports situated (physically) on the same side of the passive
routing network. In fact there are two scenarios for the use of
the N×N ONoC, both using the ONoC for communication in a
single direction only:

• in the first scenario, shown in Figure 6. (a) for 8 IP
blocks, we consider that each IP block is assigned a
pair of initiator/target ports. This leads to total
connectivity between all N IP blocks, and to the non-
use of wavelengths corresponding to communication
paths Ii-Tj when i=j.

• in the second scenario, shown in Figure 6. (b) for 8 IP
blocks, we consider that two identical (N/2)×(N/2)
ONoCs are used for request/response type
communications between two sets of N/2 IP blocks.
In this case, no communication is possible between
IP blocks in the same set, but this scenario does lead

3 FSR is defined as the difference between resonant wavelengths of a passive

resonator. In the Si/SiO2 microdisk resonators, FSR ≈ 50nm.
4 Clock Cycle Latency

to reduced requirements on the overall number of
wavelengths and routing elements.

λλλλ1
I1

I2

I3

I4

I5

I6

I7

I8

λλλλ1

λλλλ2

λλλλ3

λλλλ3

λλλλ4

λλλλ5

λλλλ5

λλλλ6

λλλλ7

λλλλ7

λλλλ8

λλλλ1

λλλλ1

λλλλ2

λλλλ3

λλλλ3

λλλλ4

λλλλ5

λλλλ5

λλλλ6

λλλλ7

λλλλ7

λλλλ8

T1

T2

T3

T4

T5

T6

T7

T8

IPA

IPB

IPC

IPE

IPG

IPD

IPF

IPH

































































=

































H

G

F

E

D

C

B

A

H

G

F

E

D

C

B

A

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

0

0

0

0

0

0

0

0

5362718

5473821

3451687

6754132

2314576

7861543

1283745

8172635

λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ
λλλλλλλ

(a)

λλλλ1
I1

I2

I3

I4

I1

I2

I3

I4

λλλλ1

λλλλ2

λλλλ3

λλλλ3

λλλλ4

λλλλ1

λλλλ1

λλλλ2

λλλλ3

λλλλ3

λλλλ4

T1

T2

T3

T4

T1

T2

T3

T4

request path

response path

IPA

IPB

IPC

IPD

IPH

IPG

IPF

IPE

































































=

































H

G

F

E

D

C

B

A

H

G

F

E

D

C

B

A

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

IP

0000

0000

0000

0000

0000

0000

0000

0000

2314

3421

1243

4132

2314

3421

1243

4132

λλλλ
λλλλ
λλλλ
λλλλ

λλλλ
λλλλ
λλλλ
λλλλ

(b)

Figure 6. Communication scenarios and corresponding connectivity matrices
for ONoC in 8-IP block scenarios (a) single 8×8 ONoC for total connectivity

between 8 IP blocks (b) 2 4×4 ONoCs for request/response connectivity
between 2 groups of 4 IP blocks

In Table II, a comparison is made between various
performance metrics for each scenario. These represent
extremes for (a) total connectivity and (b) balanced
communication between groups of IP blocks of equal numbers.
In practice, it is unlikely that the required system connectivity
will fall into either of these scenarios. However, the total
connectivity scenario represents the default or reference
scenario, while the grouped connectivity scenario makes clear
that if total connectivity is not required in the system,
significant reductions in complexity can be achieved.

TABLE II. COMPARISON BETWEEN PERFORMANCE METRICS FOR TOTAL
CONNECTIVITY AND GROUPED CONNECTIVITY ONOC SCENARIOS

 (a) Total
connectivity

(b) Grouped
connectivity

IP blocks N N
Connections N(N-1) (N/2)2
Required wavelengths per IP block nλ N-1 N/2
Number of routing elements nr N(N-1)/2 N(N-1)/4

B. Physical considerations

The comparisons mentioned in Table I are important for
several reasons. Firstly, the number of routing elements nr
impacts directly on the overall size and complexity of the
passive routing network. The size of the photonic
communication layer is limited by the size of the CMOS chip.
If several parallel λ-routers can fit into this area, then data rate
could be increased (or power consumption reduced by running
at a lower clock frequency).

Secondly, the required number of wavelengths nλ per IP
block will impact directly on the number of transmitters (and

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 48

sources and wavelength multiplexers) and receivers (and
wavelength demultiplexers and detectors) per IP block. The
schematic of the transmitter structure and corresponding
geometrical representation for the set of microdisk laser
sources is shown in Figure 7. (a) and Figure 7. (b) respectively.

in
iti

at
or

 N
I

Laser nλλλλDriver n λλλλ
nb-bits

flit

clk 1 (f1) clk 2 (f2=nb*f1)

1-bit
flit

Digital

Serializer Demux

Address
Decoder

Driver 3 Laser 3

Laser 2Driver 2

Driver 1 Laser 1

λλ λλ-
ro

ut
er

 w
av

eg
ui

de
Analog Optoelectronic

(a)

g1,2
c4

w...

...

λλλλ1

r1

r2λλλλ2

r3

λλλλ3

r4λλλλ4

(b)

Figure 7. nλ-laser source transmitter structure (a) schematic (b)
corresponding geometrical representation for the set of microdisk laser

sources

Since the laser source drivers are based on current
modulation schemes, each source costs, in terms of static and
dynamic power consumption, its bias current and modulation
current respectively. As a consequence, the overall static and
dynamic power consumption increases linearly with nλ. In
terms of the geometry and its impact on the size of the
transmitter on the photonic layer, its area At can be expressed
as

() () ()() ()wcrrrcwgrnAt ++




 +++−+−=)2(22221 22

λ
 (2)

where

λ

λ

n

c
c

n

n
n∑

== 1 ;
λ

λ

n

r
r

n

n
n∑

== 1 ;
λ

λ

n

g
g

n

n
nn∑

=
+

= 1
1,

and cn represents the nominal sourcen-waveguide distance
(between 0.4-0.6µm), rn the nominal microdisk laser radius
(between 1-10µm), gn,n+1 the minimum source-source spacing
(typically 3µm), and w the waveguide width (under 1µm).

At the target end, each IP block requires a separate receiver
path for each wavelength received, in order to identify the
origin of each incoming data flit and also in order to be able to
buffer flits incoming simultaneously from different initiator
ports. The schematic of the receiver structure and
corresponding geometrical representation for the set of
microdisk demultiplexers and broadband photodetectors is
shown in Figure 8. (a) and Figure 8. (b) respectively.

deserial-
izer nλλλλ

+ buffer

Digital Analog Optoelectronic

ta
rg

et
 N

I

detector nλλλλ receiver nλλλλ

nb-bits
flit

clk 1 (f1)clk 2 (f2=nb*f1)

1-bit
flit

deserial-
izer 3

+ buffer

receiver 3detector 3

detector 2 receiver 2

detector 1

λλ λλ-
ro

ut
er

 d
em

ul
tip

le
xe

r

receiver 1

deserial-
izer 2

+ bufferdeserial-
izer 1

+ buffer

(a)

...

...

λλλλ1 r1

r2
λλλλ2

r3

λλλλ3

r4
λλλλ4

D

D D

D

demultiplexing
microdisk array

broadband
photodetectors

(b)

Figure 8. nλ-demultiplexing receiver structure (a) schematic (b)
corresponding geometrical representation for the set of microdisk

demultiplexing elements and broadband photodetectors

Finally, as shown in Figure 9. , since the maximum WDM
window is approximately equivalent to the FSR of the
microdisk resonators, a larger number of wavelengths will also
lead to more stringent constraints on the selectivity (Q factor)
of each resonator, and on the accuracy of the lithography
techniques used to define the radius (and resonant wavelength)
of each passive microdisk in the λ-router. With current process
technology characteristics, a maximum of around 16
distinguishable and stable wavelengths can be achieved.

f1 f2 f3 f4

FSR1

FSR2

FSR3

FSR4

WDM window width

trans-
mittance

relative
optical

frequency
Figure 9. Relationship between microdisk resonator free spectral range and

WDM window width

VI. CONCLUSIONS

In this work, we have described a scalable and fully
connected N×N ONoC topology compatible with existing NoC
paradigms. We have covered the main metrics that can be
extracted from various communication scenarios for fully
connected topologies, and in particular constraints on source

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 49

wavelength accuracy and passive filter selectivity depending
on the number of required wavelengths, and power and area
issues depending on the number of active and passive devices.

REFERENCES
[1] M. Gschwind, "Chip multiprocessing and the Cell broadband engine,"

ACM Int. Conf. Computing Frontiers, Ischia, Italy, May 2006

[2] L. Pavesi, G. Guillot (Eds.), “Optical Interconnects”, Springer (2006)

[3] M. Coppola, C. Pistritto, R. Locatelli and A. Scandurra STNoC™: An
Evolution Towards MPSoC Era”, NoC Workshop, march2006, DATE
2006

[4] A. Kazmierczak et al., "Design, simulation, and characterization of a
passive optical add-drop filter in silicon-on-insulator technology," IEEE
Photon. Technol. Lett., vol. 17, no. 7, pp. 1447-9, July 2005

[5] I. O'Connor et al., "Reduction methods for adapting optical network on
chip topologies to specific routing applications," Proc. Design of
Circuits and Integrated Systems (DCIS), November 12-14 2008,
Grenoble, France

[6] L. Zhang et al., "Generalized Wavelength Routed Optical Micronetwork
in Network-on-chip", Proc. 18th Int. Conf. Parallel and Distributed
Computing and Systems (IASTED), pp. 698-703, Dallas, TX, Nov. 2006

[7] A. Kazmierczak et al., "Design and characterisation of optical networks
on chip," Proc. Eur. Conf. Integrated Optics (ECIO), Grenoble, France,
April 2005

[8] M. Briere et al., "Heterogeneous modelling of an Optical Network-on-
Chip with SystemC," Proc. Rapid System Prototyping Workshop (RSP),
June 2005

[9] M. Brière et al., "System Level Assessment of an Optical NoC in an
MPSoC Platform," Proc. Design Automation and Test in Europe
(DATE), Nice, France, April 2007

[10] A. Bona, V. Zaccaria, and R. Zafalon, "System level power modeling
and simulation of high-end industrial network-on-chip," Proc. Design,
Automation and Test in Europe (DATE) Conference and Exhibition,
Munich, Germany, February 2004

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 50

 Move Logic Not Data : A Conceptual Presentation

Ahmed Hemani, Muhammad Ali Shami
School of ICT, Royal Institute of Technology, KTH

Stockholm, Sweden
hemani/shami@kth.se

Abstract—Memory and global interconnect dominate the cost,
power and performance of Embedded System on Chip (SOC)
architectures. We contend that most of the architectural
innovations being pursued today do not directly address these
challenges. Move Logic Not Data is a scalable architectural
concept where the movement of data is minimal. The logic that
transforms/creates data is instead brought to the data. This is
implemented with the help of Networks on Chip (NOC) which
allows us to create seamless portioning of memory and logic
resources. Two additional innovations, further improve the
efficacy of this fundamental innovation: Reduce the code size.
Movement of code also costs in terms of energy and latency. We
propose using ultra complex algorithmic size instructions in the
form of reconfigurable logic. Conceptual arguments and
architecture that would implement these innovations are
presented backed by theoretical analysis of their impact.
Research challenges are identified that would need to be
overcome to implement the proposed architecture.

I. INTRODUCTION
Nomadic products host a suite of applications, dominated

by high performance wireless communication and multi-media
algorithms. The performance requirement of each of these
applications can be extreme - the PHY layer of the now
mundane 802.11a/g standard is 5 GIPs [1] and encoding
decoding a h.264 stream in the meager CIF standard would
need the ARM’s flagship ARM11 processor to tick at 1.6 GHz
with no cache misses, which is quite theoretical as it is not
possible to clock ARM11 processors at this speed even in the
latest 65 nm technology node. Meeting such extreme
performance demands, for not one but a suite of applications
and to power them on battery, produce them for mass market
and keep the engineering cost manageable is an extreme SOC
engineering challenge.

In SOC designs embedded memory is increasing primarily
because of rapid increase in the amount of data handled by
communication and multimedia algorithms to achieve higher
bandwidth or resolution/quality [2].

The potentially arbitrary communication among
applications forces system architects to often adopt a shared
memory model of communication. To satisfy the large storage
need, the cost and process factors, these products almost
always having a single large external SDRAM memory.
Concurrent applications that need high bandwidth memory
access to the external SDRAM creates a bottleneck and results
in usage of expensive L1 and L2 caches to hide latency and this
explains the secondary need for memory. The architecture
efficacy gap between the energy and performance needs of
applications - communication, multi-media and security - and

what is afforded by technology scaling is increasing [3]. Not
only do the SOC architects have to contend with vastly large
amount of data, they also have to tackle moving this data
among applications at high-speed, a particularly difficult task
in view of the well known fact that while transistors become
fast with technology scaling, the global interconnect is not
scaling [4] [5] as shown in Table I.

TABLE I. ALU, MEMORY AND INTERCONNECT DELAYS [4]

Operation Delay in 130 nm Delay in 50 nm

32b ALU Operation 650 ps 250 ps
32b Register Read 325 ps 125 ps
Read 32b across chip RAM 780 ps 300 ps
Transfer 32b acros chip (10mm) 1400 ps 2300 ps
Transfer 32b acros chip (20mm) 2800 ps 4600 ps

II. RELATED WORK
To close this gap between performance and memory a

range of techniques have been deployed from the simple
measures like increasing the clock frequency, increasing the
depth of pipelining to more sophisticated measures like
Instruction level parallelism (ILP), thread level parallelism
(TLP) have been tried and the returns are diminishing [6]. ILP
is primarily an architectural technique directed at improving
the computational efficiency, and imposes more stringent
demands on memory efficiency.

A. MPSOC
The latest architectural trend is the move to multi-

processing. Advanced architectures are exploring the
possibility of using NOC together with Multi-Processors to
alleviate the bus bottleneck. Like ILP, we contend that the
move to MPSOC is well justified but the goal is to overcome
computational bottleneck, it does not effectively deal with the
memory and the global interconnect challenge, which we argue
is the central challenge.

To drive home the point that MPSOC does not alleviate the
memory and interconnect challenge and are in fact plagued by
it, consider the example shown in Figure 1, a slightly modified
schematic of a wireless multi-media platform test chip from
NXP [7]. This platform is a state of the art MPSOC in 65nm
and a flagship product of NXP. To meet the large combined
storage need of these applications and to enable arbitrary data
communication among them, a large external Low Power DDR
(LPDDR) memory is instantiated to implement a shared
memory model of communication. As illustrated in Figure 1
with black lines, all the application processors need to access
the external LPDDR creating a huge bottleneck. To hide the

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 51

Data moves
spatially

Data moves
temporally

Logic moves
temporally and spatially

Message
Passing

Shared
Memory

Shared
Logic

M e m o r y

L o g i c

M e m o r y

L o g i c
M e m o r y

L o g i c

SDRAM
Ctrlr

Control Access Network

A
R

M
11

76
L1

 $ET
M

11
 C

S
JT

A
G

DTL -AXI

LP DDR
Controller

PADS+DLL

Fl
as

h
C

on
tro

lle
r

TZ Adapter

SRAM

Emb . Mem
Controller

I2 C
s

Ti
m

er
s

C
FG

I
D

P

A
X

I
V

PB
/A

PB

C
G

U
 +

 P
LL

Memory Access Network

PM
C

R
G

U

R
TC

Tunnel

I

T

R
/W

U
A

R
Ts

A
X

I
V

PB
/A

PB

TZ Adapter

Boot
ROM

Emb . Mem
Controller

LP DDR

SDRAM
Ctrlr

Control Access Network

A
R

M
11

76
L

1
$ET

M
11

 C
S

E
T

M
11

 C
S

JT
A

G

DTL -AXI

LP DDR
Controller

PADS+DLL

Fl
as

h
C

on
tro

lle
r

TZ Adapter

SRAM

Emb . Mem
Controller

I2 C
s

Ti
m

er
s

C
FG

I I
DD

P

Trimedia

Video DSP

L1 $

Video DSP

L1 $

In
te

rr
up

t
C

on
tro

lle
r

In
te

rr
up

t
C

on
tr

ol
le

r

A
X

I
V

PB
/A

PB

C
G

U
 +

 P
LL

Memory Access NetworkMemory Access Network

PM
C

R
G

U

R
TC

Tunnel

I

T

T
unnel

I

T

R
/W

R
/W

U
A

R
Ts

Audio

DSP

L1 $

Audio

DSP

L1 $

A
X

I
V

PB
/A

PB

3G

Modem

3G

Modem

WLAN

Modem

WLAN

Modem

TZ Adapter

Boot
ROM

Emb . Mem
Controller

LP DDR

Sea

of

DSP

Sea

of

DSP

SDRAM
Ctrlr

Control Access Network

A
R

M
11

76
L1

 $ET
M

11
 C

S
JT

A
G

DTL -AXI

LP DDR
Controller

PADS+DLL

Fl
as

h
C

on
tro

lle
r

TZ Adapter

SRAM

Emb . Mem
Controller

I2 C
s

Ti
m

er
s

C
FG

I
D

P

A
X

I
V

PB
/A

PB

C
G

U
 +

 P
LL

Memory Access Network

PM
C

R
G

U

R
TC

Tunnel

I

T

R
/W

U
A

R
Ts

A
X

I
V

PB
/A

PB

TZ Adapter

Boot
ROM

Emb . Mem
Controller

LP DDR

SDRAM
Ctrlr

Control Access Network

A
R

M
11

76
L

1
$ET

M
11

 C
S

E
T

M
11

 C
S

JT
A

G

DTL -AXI

LP DDR
Controller

PADS+DLL

Fl
as

h
C

on
tro

lle
r

TZ Adapter

SRAM

Emb . Mem
Controller

I2 C
s

Ti
m

er
s

C
FG

I I
DD

P

Trimedia

Video DSP

L1 $

Video DSP

L1 $

Trimedia

Video DSP

L1 $

Video DSP

L1 $

In
te

rr
up

t
C

on
tro

lle
r

In
te

rr
up

t
C

on
tr

ol
le

r
In

te
rr

up
t

C
on

tro
lle

r
In

te
rr

up
t

C
on

tr
ol

le
r

A
X

I
V

PB
/A

PB

C
G

U
 +

 P
LL

Memory Access NetworkMemory Access Network

PM
C

R
G

U

R
TC

Tunnel

I

T

T
unnel

I

T

latency, the processors have a sizeable L1 caches for
instruction and data and potentially a system L2 cache. Other
sub-systems have local buffers. Even a 1 GB/sec memory bus
is barely able to sustain the worst case bandwidth requirement.
Even with large, fast caches the processors - ARM1176 and
Trimedia - typically operate effectively at one-third of their
clocked frequency. In other words, if the ARM1176 is clocked
at 400 MHz, the computational throughput is as if it was
operating at 133 MHz with no cache misses. The inability to
effectively handle large amount of data and large movement of
data by this typical state-of-the-art architecture is the root cause
of huge latencies, wastage of energy and silicon.

R
/W

R
/W

U
A

R
Ts

Audio

DSP

L1 $

Audio

DSP

L1 $

Audio

DSP

L1 $

Audio

DSP

L1 $

A
X

I
V

PB
/A

PB

3G

Modem

3G

Modem

3G

Modem

3G

Modem

WLAN

Modem

WLAN

Modem

WLAN

Modem

WLAN

Modem

TZ Adapter

Boot
ROM

Emb . Mem
Controller

LP DDR

Sea

of

DSP

Sea

of

DSP

Sea

of

DSP

Sea

of

DSP

Figure 1. Memory Challenge In State of Art SOC

B. Processor In Memory
Memory is the central challenge has been recognized by a

stalwart like Prof. David Patterson at Univ. of California
Berkeley where a major project called Intelligent RAM
(IRAM) has been launched. A vector media processor [8] for
embedded systems is the first concrete outcome of this project.
Solving the bottleneck to the external DRAM has motivated
this work to incorporate on chip DRAM to get large
bandwidth. While on chip DRAM in itself is not an innovation
as it has been used by graphics chip designers in the past, the
key contribution is to couple vector lanes to banks of DRAM
via a fully connected inter-routing network in an architecture
called VRAM. Recognizing that the fully connected network is
overkill, a more optimized but less general version called
CODE has also been developed. The focus of this project is to
exploit the high on-chip memory bandwidth to fuel vector
processor creating a complex on-chip communication network.

Flex RAM [9] is the name of an effort at Univ. of Illinois at
Urbana Champaign that advocates Processor in Memory (PIM)
approach to address the memory challenge. In this approach
memory chips are replaced by 1 MB DRAM banks that
includes a light processor. An on-chip interconnect connects 64
such memory bank processor together. Whereas IRAM targets
embedded applications FlexRAM principally targets server
applications. Flex RAM has not been commercialized mostly
because the synchronization problem was not solved.

Imagine Stream Processor is another effort by Professor
William Dally in university of Stanford to increase on-chip
communication bandwidth in order to fuel many ALUs
arranged in SIMD fashion [10]. In imagine processor, on chip
memory called streaming memory and streaming register file is
used to increase the communication bandwidth to 32Gbytes/s.
Imagine processor utilizes the reference of locality principle
and reduces the global bandwidth by having local buffers and
stream register file. The intermediate results are stored in these
local memories. Data movement between different kernels
takes place through them as well instead of main memory, thus
reducing global communication bandwidth requirement [11].
Once we have presented our architecture in detail in sections
III and IV we will show the essential differences between
imagine and MLND and show how this difference in moving
logic vs moving data benefits both energy and performance.

III. MOVE LOGIC NOT DATA
The objective of this principle is to develop an architecture

where the movement of data is minimal. The code/logic that
transforms/creates data is instead brought to the data to
transform it and/or create new data. Movement of code also
costs in terms of energy and latency. We propose using ultra
complex algorithmic size instructions in the form of
reconfigurable logic. Traditionally, communication among
applications/tasks has been achieved by either message passing
or shared memory models. We propose a third alternative, a
shared logic model.

Figure 2. Visualizing the three models of communication.

Figure 2 provides an intuitive explanation of the differences
between the three models. The inner circle represents logic and
the outer circle represents the memory. Conceptually, the
segments show the multi-processors hosting multiple
applications and the alignment of segment shows a processor’s
association with a memory partition. In the message model, the
inner logic circle does not rotate, the outer memory circle does,
implying that logic segment once it has transformed data, the
data moves and gets associated with another logic segment. In
the shared memory model, the segments in outer circle
represents temporal windows into a shared memory, at any
particular time only one temporal window opens and the data is
fetched and stored in local buffers of the logic segments.
Generally, more than one temporal window could be open
representing more than one shared memory. In the model we
propose, it is the logic circle that rotates, while the memory
circle stays stationary. The logic circle is shown in relatively

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 52

reduced size to underscore the fact that the code size is
reduced. The reduction is both spatial - the code should take
less space compared to the equivalent code in terms of
assembly instructions and temporally - the code is changed less
frequently as it represents ultra-large algorithmic size
instruction. The logic also rotates in spatial and temporal sense.
Spatial rotation implies that the same reconfigurable function
can potentially move (its code) from one logic segment to
another. Temporal rotation implies that different reconfigurable
functions are sequentially loaded into the same logic segment.

a
Memory

a a/2Reconfig
Compute

Logic

a
Memory

a a/2Reconfig
Compute

Logic

a/2

n
Reconfig
Compute

Logic

Memory

a/2
Memory

Memory Memory

a/4Reconfig
Compute

Logic

Reconfig
Compute

Logic

Reconfig
Compute

Logic

a/2

n
Reconfig
Compute

Logic

Memory

a/2
Memory

Memory Memory

a/4Reconfig
Compute

Logic

Reconfig
Compute

Logic

Reconfig
Compute

LogicIV. QUANTITATIVE ANALYSIS
Consider an abstract chip shown in Figure 3(a), square in

shape of side a units, dominated by memory with a small neg-
ligible area occupied by processor in the centre. Also assume
that the memory is organized in N words. On an average these
N words would travel approximately a/2 distance. Now if we
divide this chip into 4 equal parts and each part has its own
processor in the middle. Assuming that the data in each
partition stays within the partition and is only operated by the
processor/logic in that partition, and then the average distance
that these N words would need travel would be a/4.
Generalizing, by dividing the memory into ‘n’ partitions, we
reduce the average distance travelled by each of the N words
by factor n1/2 compared to the original un-partitioned case.
Latency is dominated by interconnect and memory access. The
delay in interconnect is directly scaled down by n1/2 and also its
switching capacitance. Since the delay in memory is related to
its size by (SIZE)1/4 [12], the memory delay scales down by
n1/4. Let LTotal = Lc + Li + Lm, where LTotal is the total latency, Lc
is the compute latency, Li is the interconnect latency and Lm is
the memory latency. Further assume that Li = 10Lc and Lm = Lc.
This is partly based on data shown in Table I. Then LTotal = 12
Lc. Now if LTotal(n) represents the Total Latency for the n-
partitioned case

n
nnL

n
L

n
L

LL C
CC

CnTotal

4
3

4)(
1010 ++

=++= (1)

S
nn

n
L
L

nTotal

Total =
++

=
4

3
)(10

12
 (2)

Where S is the scaling factor, which is the ratio of total
latencies for the un-partitioned and partitioned case. Now we
use the above arguments to see its impact on dynamic power
consumption; the partitioning does not have any impact on
static power consumption under the assumption that there is no
change in the total area of the chip. The dynamic power
consumption for the unpartitioned case is P = CV2f. Now if we
consider dynamic power for a single partition P(1) in the n-
partitioned case, the switching capacitance scales by n and
since the Total Latency LTotal(n) has gone down by a factor S,
we can scale down the operational frequency by S to maintain
the same throughput.

S
fCVPn

S
fV

n
CP 22)1(.)1(=⇒= (3)

n
nn

P
Pn

12
10)1(. 4

3
++

= (4)

Figure 3. (a)An embedded soc (b)Embedded soc partitioned into 4 parts.

Equation 4 is the factor by which the dynamic power
consumption goes down for the n-partitioned case and is shown
in Figure 4. The above analysis though broadly accurate does
not factor in the fact that with the scaling frequency, the Vdd
would also scale down. Besides partitioning is a key
complication. Getting a clean partitioning is a non-trivial
problem and beyond a certain partitioning, the inter-partition
communication will start to eat into the benefits of partitioning.

Figure 4. Power scaling as function of n

V. MLND ARCHITECTURE
A conceptual diagram of the MLND architecture is shown

in Figure 5 which is composed of the following components:

A. Memory Pool
Memory Pool is a pool of runtime partition-able memory.

Each partition has the capacity to hold the dataset required for
an application. While the MLND architecture provides hooks
for implementing the partition, it is the software that
characterizes an application for its memory needs based on
bounded use case statements and manages the partitioning at
runtime. Two kinds of memories are used. One that has higher
bandwidth and relatively low capacity is meant for use by the
physical (PHY) layer of the seven layer OSI model and the

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 53

other that has relatively lower bandwidth but higher capacity is
meant for the upper six layers of the OSI model.

Memory

Logic Data NOC Control &Configuration NOC

Sy
st

em
 C

on
tr

ol
le

r.

R
un

tim
e

M
an

ag
em

en
t

R
IS

C
 P

ro
ce

ss
or

Application 1 Partition Application 2 Partition External Data NOC Memory

Logic Data NOC Control &Configuration NOC

Sy
st

em
 C

on
tr

ol
le

r.

R
un

tim
e

M
an

ag
em

en
t

R
IS

C
 P

ro
ce

ss
or

Application 1 Partition Application 2 Partition External Data NOC

B. Arithmetic Logic Pool
Arithmetic logic Pool is a pool of runtime partition-able

reconfigurable arithmetic logic. This logic will be glued
together to implement complex integer units to implement
MACs, Butterflys etc. Like the memory partition, the
arithmetic logic partition is dimensioned to fulfill the needs of
an application. Depending on the performance constraint, it is
the MLND compiler’s task to determine the degree of
parallelism, algorithmic level pipelining etc.

Figure 5. Conceptual view of Move Logic Not Data Architecture

C. Control logic
Like arithmetic logic, the pool of control logic provides the

possibility of creating FSMs on the fly to control the arithmetic
data path and memory operations. Essentially, the created FSM
works like the hardware FSM and together with the arithmetic
logic comes very close to the hardwired ASIC model of
implementation, albeit with an overhead for some generality
and the ability to partition. The separation of arithmetic and
control logic is a key innovation to gain generality while
maintaining efficiency and performance. This will be achieved
by composing concurrent FSMs from a library of templates
corresponding to various computational behaviors. The
Arithmetic and Control Logic Pools together are dedicated to
implementing the PHY layer of the OSI model.

D. Protocol Processor Pool
In the OSI model, the five immediate layers above the

physical layer are characterized by control and memory
intensive functionality and their memory access pattern is very
irregular as compared to that of PHY layer so they are ideally
served by a protocol processor. We intend to run the
Application layer on a separate Application Processor. The
protocol processors have access to high capacity memory and
also control the transfer of data between the high-bandwidth
PHY layer memory partitions and the Protocol processor
memory partitions.

E. Interconnect
The NOC based interconnects implemented in MLND will

give the flexibility to seamlessly partition the system. This kind
of partitioning will make custom ASIC processors on the fly
with its own memory unit, interconnect and data path The
MLND architecture will have three kinds of NOC based
interconnects as shown in Figure 6.

External data NOC brings external data into the chip and
deposits it into the right memory partition and then once it has
been processed takes it out to external memory. This kind of
interconnect requires speed and flexibility and will be made up
of high speed packet switched NOC.

Data NOC couples the memory partition to the arithmetic
and control logic partition and it is this interconnect that
MLND ensures is qualified as local interconnect. This
interconnect will connect some memory to some ALU for a
complete reconfigurable cycle and the interconnection will
remain fixed for that reconfigurable cycle. This requires less
flexibility, so we can implement this interconnect with high
speed circuit switched NOC.

Control and Configuration NOC is used to control and
configure the partitions and for operation and maintenance.
This interconnect don’t require much bandwidth but do require
flexibility. So low speed packets switched NOC will be
implemented for this kind of interconnect.

Figure 6. Conceptual view of Partitioning using NOC

F. System/Application Controller
The system controller provides the runtime management

services of allocating memory and logic/arithmetic/protocol
processor pools and partitioning. Figure 5 shows two RISC
processors, System Controller and Application Processor,
flanking the entire MLND structure. One of them is intended as
a systems controller and the two would share the application
layer functionality of the applications. The choice of two RISC
processors is arbitrary at this stage; the actual number will be
the outcome of the dimensioning of the MLND architecture by
the design tool proposed as a research topic in this project.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 54

G. Run Time Management
The MLND runtime support provides interface to the

external world, manages resources in the MLND architecture
and co-ordinates execution of the applications. The MLND
Runtime System is conceptually made up of three interacting
components. The External Interface manager interacts with the
external world. This involves interrupts that trigger
applications and peripherals responsible for exchange of data
between external world and the MLND system. Resource
manager, as the name suggests manages the resources like
memory, arithmetic and control logic, bandwidth and
energy/battery. When an external signal, a touch screen, a jog
dial or a radio signal triggers an interrupt, the External
Interface Manager passes on the request to the Resource
Manager. The Resource Manager in turn analyzes the available
resource, makes an allocation and passes on the constraints and
requirement to the Application Manager. It is the Application
Manager that instantiates the controllers: the application
controller, the protocol processing code and the PHY layer
controllers based on the constraints received from the Resource
Manager. When an application is complete, it informs The
Resource Manager, via the Application Manager resulting in an
update of the available resources.

Besides the physical resources, the other key resource that
the MLND Runtime Manager would have to handle is that of
energy. The MLND architecture, from grounds up is built to
implement the philosophy, if a resource is not being used, keep
it shut. The other key energy management principle is to run
the application at the optimal voltage frequency operating
point, using the Dynamic Voltage Frequency Operating
principle. The MLND architecture will introduce the novelty of
having dynamic voltage islands and the RTM will play a
critical role in its management

System Partitioning

S
ystem

 D
im

ensioning

Application Layer
Compiler

Protocol
Processing Layer

Compiler

Physical Layer
Compiler

Application
Protocol

Processing
Layers

Physical
Layer

Application Layer
Executable
RISC SW

Protocol Processing
Layers Executable

ASIP SW

Physical Layer
Executable

Reconfigurable HW

Energy &
Performance
Constraints

MLND Architectural Instance +
Run Time Management System +

Executables

C
om

ponents +
Tem

plates
D

atabase

System Partitioning

S
ystem

 D
im

ensioning

Application Layer
Compiler

Protocol
Processing Layer

Compiler

Physical Layer
Compiler

Application
Protocol

Processing
Layers

Physical
Layer

Application Layer
Executable
RISC SW

Protocol Processing
Layers Executable

ASIP SW

Physical Layer
Executable

Reconfigurable HW

Energy &
Performance
Constraints

MLND Architectural Instance +
Run Time Management System +

Executables

C
om

ponents +
Tem

plates
D

atabase

H. Methodology
MLND programming methodology would map a suit of

applications, typified by modems and codecs, to the MLND
architecture. While the details of the Design Environment (DE)
are the objective of the proposed research, the conceptual steps
and the components involved in the mapping process are
shown in Figure 7.

1) Step 1. System Partitioning
In this step, the MLND DE partitions the application into

three sets of functionality, each intended to run on a different
kind of compute engine adapted to the nature of the
functionality. The Application Layer on a RISC processor, the
next five protocol processing layers on a customized protocol
processor and the Physical layer on the reconfigurable
arithmetic/control logic tiles. As a result of this step, we get the
total application partitioned into the Application layer, the
Protocol Processing Layers and the Physical Layer. These three
partitions now communicate using the NOC based interconnect
structures of the MLND architecture.

2) Step 2. System Dimensioning
This step identifies the overall storage need of the

application, dimensions it and budgets the energy and
performance constraints among the different partitions. We rely
on the fact that the MLND concept primarily targets DSP

oriented applications, where the nature of functionality,
characterized by isochronous traffic, and the standards
specification (from IEEE, ITU, MPEG etc) considerably helps
gauge the storage needs. Further narrowing the search space
are the architectural constraints that are imposed by the MLND
architectural template and the memory technologies available.
Lastly, the way application is modeled in terms of its data
organization and access to it has a strong bearing on the storage
dimensioning. The result of this step is the critical decision on
what parts of dataset will be on chip and off-chip. Also decided
in this step are the dimensions of the high bandwidth PHY
layer memory and the high capacity Protocol layers memory.
These decisions are also key inputs to the run time
management system that needs to implement these partitions.

After the Steps 1 and 2, it should be possible to create a
transaction level simulation model of the application, where the
different partitions and storage interact using the MLND
control, configuration and interconnect infrastructure. The next
steps would refine the individual partitions.

3) Step 3. Protocol Layer Compilation
This step refines the protocol processing layers. The

implementation style is software running on a RISC processor
enhanced with custom instructions and internal memory
structure to optimize the energy and performance of the
protocol processing functionality. Creating such ASIPs
(Application Specific Instruction Processors) is well researched
with MESCAL [13] methodology as a prime example of this
and will be the basis for this step. The logic for enhancing the
RISC processor is built from reconfigurable tiles that can be
configured to do various protocol processing functions. This
makes the protocol processing pool homogenous and gives the
runtime system freedom to place an application anywhere as
required by the dynamic runtime situation.

Figure 7. The MLND Design Flow

4) Step 4. Physical Layer Compilation
This step dimensions and instantiates the reconfigurable

compute engine composed of arithmetic and control logic tiles.
The key insight behind this step is that the physical layer
functionality in most cases is composed of standard DSP

and control logic tiles.
The key insight behind this step is that the physical layer
functionality in most cases is composed of standard DSP

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 55

functions whose architectural implementation space is pretty
well understood. Examples of such functions are FFT, Viterbi,
FIR filters etc. This understanding of architectural space is
captured as templates and used to narrow the design space that
the synthesis tool would otherwise have to search. For the few
functions that do not have templates, we intend to use existing
High Level Synthesis tools to create an implementation.

The results of this layer are the configuration codes that
implement the arithmetic and address generation parts for the
different algorithms/functions and the configuration codes for
the control logic to implement the Finite State Machine (FSM)
that controls the arithmetic and address generation logic. This
layer also synthesize the PHY layer control and memory logic
that glues together individual algorithms/functions that make
up the PHY layer. This controller is again implemented as an
FSM, and controls the individual algorithmic level controller
synthesized in steps 3 & 2. More importantly, this controller is
responsible for controlling the pipeline decision.

An additional key aspect regarding evaluation and
estimation in the Steps 3 and 4 is that the MLND is an
architecture built using regular tiles, and these tiles are built
using full-custom macro implementation styles, this leaves
little room for uncertainty in wiring delay as is common using
the logic synthesis/standard cell based methodology. This
approach, we believe will be key to our ability to achieve not
only the best energy / performance metrics, but also the
regularity of layout makes it possible to predict the energy and
performance.

5) Step 5. Application Layer Compilation
In this step, the application layer is compiled to the RISC

based application processor. While compilation to the RISC
processor is straight forward, the application layer is essentially
a controller that interfaces to the Protocol Processing layers via
the MLND architectural elements. The Runtime Management
System interacts with the Application Controller as the main
agent for activating an application and knowing when an
application is complete.

M

CC

P

I

QM

IFFT

L

W

L

CC/P/I/QM/IFFT

CC/P/I/QM/IFFT

(a) (b)

CC/P/I/QM/IFFT

CC/P/I/QM/IFFT

CC/P/I/QM/IFFT

M

W

Controller Controller

M

CC

P

I

QM

IFFT

L

W

L

CC/P/I/QM/IFFT

CC/P/I/QM/IFFT

(a) (b)

CC/P/I/QM/IFFT

CC/P/I/QM/IFFT

CC/P/I/QM/IFFT

M

W

Controller Controller

VI. COMPARISON WITH PREVIOUS WORK
MLND is a flexible, scalable general purpose architecture

which is not only suitable for nomadic products but equally
suitable for high performance computing systems like base
station and super computing. The computational requirements
for a nomadic product may change with time and depends on
the usage. For instance a nomadic user at times may be using
MP3 player and browsing, at some other time he may only be
using it as a GSM/3G phone, doing a video call and at most of
the time the phone is sitting idle. So a nomadic product like cell
phone requires flexibility so that it could offer the required
computational power according to user’s need and switch
off/on additional resources.

MLND is a natural candidate for such a requirement. This
ability to create runtime partitions of memory, arithmetic and
control logic to implement custom ASIC like macros are the
key to implementing the MLND theme: once the data come
into the memory partition, the reconfigurable logic (arithmetic
and control and protocol processing) implements a succession

of algorithms to transform the data. The architecture guarantees
that the memory partition and the arithmetic and control logic
partitions are geometrically close enough that they qualify as
being connected via local interconnects that does scale with
technology as opposed to the global interconnects that do not
scale with technology[5].

In MLND the separate control logic controls a set of
partitioned memory and logic blocks called cluster of
memory/logic. The partitioning will be done by using NOC
[15]. Kernels will be implemented on this cluster of
memory/logic. This kind of partitioning will make custom
ASIC processors on the fly with its own memory unit,
interconnect and data path. The data path unit will be parallel
or serial as required. These custom processors will act like
multi core/multi processors, exploiting (Instruction Level
Parallelism), or DLP (Data level parallelism), algorithm level
pipelining where all algorithms can be executed concurrently,
and working in a pipelined fashion. Every cluster has its own
individual control which makes it possible to clock them at
different clock frequency, hence implementing dynamic
voltage frequency scaling techniques to reduce power or switch
them on off by resource manager.

The basic theme of MLND is to keep the wire distance
between memory and logic minimum (local wire) so that the
power consumption on interconnect is very small. In traditional
architectures, ALUs are fueled by feeding data from memories
which are far from them; hence dissipating a lot of power in
interconnects. Such architectures do not scale with technology.
In MLND the logic close to data memory is re-programmed to
perform operation on the data stored in that memory. Imagine
processor [10] [11] is also designed keeping interconnect
power consumption in mind and is closest to MLND theme. A
comparison of data flow of OFDM in MLND with Imagine
processor is shown in Figure 8.

Figure 8. (a) Imagine Processor (b) MLND

In Imagine processor data enters into the first logic block
i.e. Convolutional Coding (CC), processed and then saved into
the memory as shown in Figure 8. From there it goes to
Puncturing (P), then back to memory. It goes to Interleaving
(I), QAM Mapping (QM) and IFFT in the same way before
going to the main memory. The total logical distance travelled
by the each data word, in case of Imagine processor, is L+10W.
Assuming the arithmetic blocks are of same dimensions, in
case of MLND the kernels are reconfigured instead of moving
the data; reducing the total distance travelled by each data word
to 10W. An OFDM symbol uses 64point FFT. A DVB

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 56

standard uses 2048 points FFT. A reconfigurable DPU
designed for MLND take 3-bits to configure. A radix-4 FFT
butterfly uses 14 such DPUs. Suppose Z is the energy
consumed by single bit to travel L distance shown in Figure 8.
The Imagine processor configures the data path once and keeps
its state for the life time of the application. On the other hand,
MLND reconfigures the data path after a certain
reconfiguration time. The number of bits needed to reconfigure
the data path, travel on average L/2 distance. Assuming the
arithmetic block of same dimensions, the energy comparison
between moving data and code is done in Table II; which
shows that it takes more energy to move data then moving the
code as code size is much smaller then data size. Table II
shows results for just one sample of FFT. Of course the
hardware will operate on many more samples before
undergoing reconfiguration which further confirms that code
movement is cheaper then data movement in terms of energy.
One may argue that code movement will be global and data
movement will be local. According to [5] in 65nm global wires
are 10 times slower then local wires, but the data in the Table II
shows that energy for movement of code, in case of 64 point
FFT, is 100 times less then energy required for movement of
data. The figures are even better for 2048 point FFT.

TABLE II. ENERGY PER BIT FOR DATA MOVEMENT IN IMAGINE
PROCESSOR VS CODE MOVEMENT IN MLND

FFT Energy per bit for Data
Movement

Energy Per Bit for Code
movement

OFDM 64 points 64x16xZ=1024Z 14x3x5xZ/2=105Z
DVB 2048 points 2048x16xZ=33554432Z 14x3x5xZ/2=105Z
Minimizing the movement of data at PHY layer is a good

thing but not sufficient. Because huge movement of data also
happens at MAC layer and if that is left un-addressed the
solution as a whole will still suffer from performance, energy
and cost in-efficiencies. That is where the protocol processing
layer takes over takes to minimize the data movement.

VII. CONCLUSION
MLND is an energy aware, scalable architecture, which

minimizes the data movement inside the chip hence reducing
power consumption. It has a regular structure and can be
implemented in full custom. Ability to know exact wire lengths
because of full custom implementation, and energy aware
mapping and runtime system, makes it significantly different
and better from the competitors. Traditional architectures lack

this ability. MLND is flexible enough to be used in nomadic
products as well as high end computing systems and super
computers.

REFERENCES
[1] End to End Reconfigurability White Paper. Hardware Technology

Exploration: Impact of Technology Evolution on End to End
Reconfigurability. http://e2r.motlabs.com/whitepapers/
E2R_WhitePaper_HardwareTechExploration_December05.pdf

[2] Erik Jan Marinissen, Betty Prince, Doris Keitel-Schulz, Yervant Zorian.
Challenges in Embedded Memory Design and Test. Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition
(DATE’05).

[3] Panagiotis Tsarchopoulos. Objective ICT-2007.3.4 Computing Systems.
FP7 Information Day. March 7, 2007. Brussels.

[4] Jan Rabaey. Silicon Architectures for Wireless Systems. Tutorial Part 1.
Hotchips Conf. 2001.

[5] Bjerregaard T. and Mahadevan S., “A Survey of Research and Practice
of NoC”, ACM Inc. New York, USA, 2006.

[6] Michael J. Flynn, Patrick Hung, Kevin W. Rudd. Deep-submicron
Microprocessor Design Issues. IEEE Micro. July-August 1999.

[7] Hemani, A, Klapproth, P. Trends in SOC Architectures. Chapter in the
book “Radio Design in Nanonmeter Technologies” Editied by Professor
Mohammed Ismail and Delia Gonzales. Springer Verlag 2006/2007

[8] Christoforos Koszyrakis. Scalable Vector Media-processors for
Embedded Systems. PhD Thesis. Univ. of California Berkeley. May
2002. Report No. UCB/CSD-02-1183

[9] Kang Yi el.al. FlexRAM: Toward more Advanced Intelligent Memory
System. Proceedings ICCD Oct. 1999.

[10] Brucek Khailany, William J. Dally, Scott Rixner, Ujval J. Kapasi, Peter
Mattson, Jinyung Namkoong, John D. Owens, Brian Towles, and
Andrew Chang, “Imagine: Media Processor With Stream,” IEEE Micro,
March/April 2001, pp. 35-46.

[11] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany,
Abelardo Lopez-Lagunas, Peter Mattson, and John D. Owens, “A
Bandwidth-Efficient Architecture for Media Processing,” Proceedings of
the 31st Annual International Symposium on Microarchitecture, Nov. 30
- Dec. 2, 1998, Dallas, Texas, pp. 3-13.

[12] Michael J Flynn, Patrick Hung. Microprocessor Design Issues: Thoughts
on the Road Ahead. IEEE Micro. May-June 2005.

[13] J. Rabaey: Reconfigurable Computing: The Solution to Low Power
Programmable DSP; Proc. ICASSP’97 Munich, Germany, April 1997.

[14] Marinissen Erik Jan, Prince Betty, Shultz D.K, Zorian, Yervant.
Challenges in Embedded Memory Design and Test. Proceedings of
DATE 2005.

[15] A Hemani, A Jantsch, S Kumar, A Postula, D Lindqvist, J Öberg, M Millberg.
Networks on Chip: An architecture for the Billion Transistor Era. Proceedings of
the IEEE Norchip Conference. October 2000.

[16] Reiner Hartenstein. Coarse Grain Reconfigurable Architectures. Proceedings of
Asia South Pacific Design Automation Conference. 2001. Yokohama, Japan

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 57

Hierarchical Agent Architecture for Scalable NoC
Design with Online Monitoring Services

Alexander Wei Yin, Liang Guang, Pasi Liljeberg, Pekka Rantala, Ethiopia Nigussie, Jouni Isoaho, Hannu Tenhunen
Department of Information Technology, University of Turku, Finland

{yinwei, liagua, pakrli, peaura, ethnig, jisoaho, hatenhu}@utu.fi

Abstract—Hierarchical Agent Architecture is proposed to pro-
vide online monitoring services to NoC-based systems. Based
on circuit conditions traced at the run-time, system settings
are monitored adaptively by agents at each architectural level.
This monitoring approach partitions various online diagnostic
and management services onto hierarchical implementation levels
so as to provide scalability and variability for large-scale NoC
design. This paper explains the monitoring interaction between
agent levels, and focuses on system optimization alternatives
handled by different agent levels. It further quantitatively an-
alyzes the feasibility and design alternatives in monitoring com-
munication interconnection upon regular tile-based NoC layout.
Though still under intensive research, the proposed architecture
is endowed with promising potential for highly-integrated NoC
design.

I. INTRODUCTION

With continuous technology scaling, the size of NoCs
(Network-on-chip) is constantly increasing. Parallelizing ap-
plications onto many processing elements leads to high po-
tential speedup as demonstrated by the recently released
TeraFLOPS processor [1] and TILE64 processor [2] which
integrate 80 and 64 cores respectively on a single chip.
In academia, thousand-core processors have been projected
and discussed [3]. However, system designers are challenged
with a number of daunting issues. Conventional concerns,
such as power consumption, will continue to pose tough,
if not stronger, constraints on design and implementation
methods. Especially the dramatic increase of leakage power in
sub-100nm technology requires urgent consideration from all
architectural levels [4]. New design considerations including
increasing influence from PVT (process, voltage and temper-
ature) variations [5] and unpredictable hardware and software
errors only exacerbate the design complexity. Variations and
faults also worsen the power constraints as the design margin
is lowered to tolerate parametric variations. To deal with these
issues, the system-level design method should support online
dynamic services at different implementation level, so as to
achieve maximum system efficiency with run-time coarse/fine-
granular tuning.

A few previous works have addressed system monitoring
services on NoC platforms [6, 7, 8]. From them, several
distinctive requirements for managing NoC structures in a
scalable manner can be identified. Firstly, local circuits need to
be provided with distributed monitoring modules. Distributed
monitoring reduces the local operation delay or interconnect

latency for urgent monitoring services, and it prevents the
appearance of communication bottleneck. However, despite
the system size, centralized monitoring is still an indispensable
complement to localized monitoring schemes. Theoretically,
a centralized monitor, with the knowledge of all on-chip
resources, is able to coordinate and balance the functioning
of all components with the aim of optimizing the overall
system performance. In practice, as an example, [9] adopts
a single processing unit for dynamic testing operations and
a global-level scheduler. For the scenario of thousand-core
NoCs with no concrete analysis available, an analogy to the
overwhelmingly complex nervous system of human beings
can help motivate the need of centralized monitors. The
human nervous system is a large-scale monitoring network
with numerous distributed neurons as local monitors. These
neurons are coordinated by upper-level centralized monitors
such as the spinal cord and the brain, which balance and
optimize the general body function. For either distributed
or centralized monitoring schemes, the energy efficiency of
monitoring services should be maximized.

We propose a hierarchical agent architecture endowed with
the required monitoring features. This architecture adds a
monitoring layer of agent hierarchy onto the NoC platform.
Agents are autonomous and adaptive monitors to be imple-
mented with various approaches, and they are responsible
for monitoring different architectural levels. Local agents pro-
vide fast and low-overhead monitoring services to individual
functional components, and report low-level conditions and
performance to higher-level agents. The latter supervise the
general system performance on a coarse granularity. This
architecture aims to achieve overall system performance by
balancing the monitoring among all on-chip resources, while
providing a wide design and synthesis space for the realization
of agents at each level.

This paper examines the functional partition of agent levels
and the monitoring interaction between them to perform mon-
itoring services with an joint effort (Section II). Upon a tile-
based NoC platform, we demonstrate the flexible incorpora-
tion of system optimization techniques with agent monitoring
architecture (Section III). As an extra communication layer
upon existing interconnect, alternatives in realizing agent
communications are examined quantitatively in Section IV,
which suggests an optimal design trade-off for monitoring
communication interconnects. Section V concludes the paper.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 58

II. HIERARCHICAL AGENT MONITORING ARCHITECTURE

A. Agent Hierarchy

The architecture ranks the agents into four level: from the
top to the bottom level, a single application agent, a single
platform agent, distributed cluster agents (one per each cluster)
and distributed cell agents (one per each cell) (Fig. 1). The
application agent is a piece of software capturing application
functionality and run-time performance requirements and con-
straints. The platform agent, based on the application specifi-
cation and resource availability, utilizes appropriate resources,
maps and schedules the instructions onto the acquired re-
sources, configures the network, and monitors general system
performance during application execution. Each cluster agent
monitors a whole cluster, which is a group of processors
with accompanying components (caches, scratchpad memo-
ries, switches, links, etc.). A cluster is logically divided into
cells, each of which is a basic functional unit, such as a
processing unit, a switch or a link. The cells are equipped
with their own local monitors, the cell agents, which trace
and adjust the local circuit conditions.

API

…...

Application Agent

Platform Agent

Cluster Agents

Cell Agents

Initial requirements

Initial

Configuration

Initial

Configuration

System

performamce

(throughput,

power)

Reconfiguration

Commands

Modifying

requirements

Cluster

performance

Reconfiguration

Commands

Error

detection

and

recovery

Circuit

conditions

(current,

buffer load ..)

Circuit setting

(Vdd, Vth, Fclk ..)

Cluster setting

(Vdd, Vbs, Fclk ..)

Figure 1. Hierarchical Agent Monitoring Approach

B. Hierarchical Monitoring Approach

The proposed architecture highlights hierarchical ap-
proaches to various monitoring services, for instance power-
optimization and fault-tolerance, by the joint efforts from all
levels of agents.

Before execution, the platform agent utilizes a number of
resources and configures the network based on the initial ap-
plication requirements with power and performance awareness
[10]. A number of resources are reserved as spares in case of
component failures. The initial configuration is enforced from
the platform agent to the cluster and then cell agents.

After the application starts running, the cell agents are
tracing their local circuit conditions, such as current (including
leakage current for idle components), workload, and any faults
or failures (for instance a link failure or a malfunctioning

processing unit). Cell agents attempt to fix the errors if
feasible (for example by retransmission in case of transient
crosstalk-induced error [11]). The traced circuit conditions
along with not-solved-yet failures are sent to cluster agents.
Cluster agents attempt to adjust the cell settings based on these
information. For instance they may scale the supplies of a
certain cell (DVFS: dynamic voltage and frequency scaling)
or the threshold voltage by using ABB (adaptive body biasing
[12]). If a component has failed to work, they will acquire
spare components and configure them into the cluster. Cluster
agents send cluster performance to the platform agent. The
information concerning cluster performance is represented at
a coarser granularity than those sent between cluster and cell
agents, for example, the power consumption of the cluster, or
average network workload within the cluster, the error rate
of the cluster. Based on these information, the platform agent
may reconfigure the system, for instance assigning more spares
into a failure-prone cluster, or scale down the voltage and
frequency of a cluster with overwhelming power consumption.
The overall system performance, for instance the throughput
and the power consumption, is reported by the platform agent
to the application agent, which may modify the real-time
application requirements. Fig. 1 illustrates these hierarchical
monitoring interactions.

The hierarchical agent-based monitoring approach is dis-
tinctive as being scalable and implementation-flexible for
any-sized NoCs. The distributed cell agents, as physically
adjacent to the functional units and exclusively responsible for
local monitoring, can provide fast and fine-grained monitoring
services to local circuits. The cluster agents are exclusively
responsible for their own clusters, thus cluster-level monitoring
is still low-latent and requires limited amount of processing
capacity. The platform agent, though monitoring the whole
system, only handles the resources at a coarse granularity. For
instance, in terms of fault-tolerance, only errors which can
not be fixed by low-level agents are reported to and handled
by the platform agent. In this manner, no communication or
processing bottleneck will appear in any large-scale platform.
The supervision of higher level agents over lower-level ones
ensures the optimal overall system performance. Hierarchical
monitoring approach also provides a wide design and synthe-
sis space for implementing various management algorithms
and circuits. Low-level circuit optimization methods, such
as power or clock-gating can be implemented as dedicated
circuits triggered by cell agents. High-level component man-
agement methods, such as DVFS or ABB, can be enforced by
cluster level agents. Low-level circuit optimization should be
simple in terms of synthesis to offer fast operation with small
overhead. High-level operations can require more processing
power since they are typically much less frequent than low-
level operations. As the highest-level monitor, the platform
agent configures the system with optimal general settings, for
instance, an appropriate network connection to reduce inter-
cluster communication. Only with the concept of monitoring
hierarchy can various optimization methods be implemented
efficiently with different design and synthesis constraints.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 59

III. HIERARCHICAL MONITORING SERVICES ON NOCS

A. Agent Mapping on Regular NoC Platform

To discuss the feasible mapping of agents on NoC plat-
form, we consider the regular tile-based mesh structure. A
conventional tile comprises of a PE (processing element), a
NI (network interface), a switch and the links. On such tile-
based NoC platform, we naturally locate a cell agent for each
tile, though distributed monitoring circuits may be located at
particular places within the cell, for instance, a power-gating
sleep-transistor on the link. The cell agent physically shares the
space with a processing element. The cluster agent is located
at fixed locations at design time, and cells are configured
into the clusters dynamically at the run-time. Depending upon
the complexity of cluster monitoring algorithm and maximum
number of cells to be monitored, a cluster agent may physi-
cally replace a conventional PE or still shares the space with a
PE. The application agent and the platform agent monitor over
the whole system; without application-specific knowledge, we
assume they are located together at the geographic center of
the tiling area. Fig. 2 illustrates the feasible mapping of agents
on the regular NoC structure.

Sw.

PE
Cell

agent

Cluster

agent

Sw.

PE

Cluster

agent

Sw.

PE
Cell

agent

Cluster

agent

Sw.

PE

Cluster

agent

Platform agent

Cell

agent

Cell

agent

Cell

agent

Cell

agent
Cell

agent

NI
NI

NINI

Application agent

Cell

agent

Cell

agent

Cell

agent
Cell

agent

Cell

agent

Cell

agent

Cluster

Cluster

Cluster

Cluster

Figure 2. Illustration of Agent Mapping on NoCs

To offer scalability for thousand-core systems, clusters can
be divided into hierarchical subclusters and similar monitoring
functional partition will be applied. It conceptually originates
from the manner a biosystem or human society organizes its
overwhelming amount of resources.

B. Low-power Optimization with Agents

In the hierarchical agent architecture, various monitoring
services can be incorporated at different implementation level
considering the specific trade-off on the actual platform. Here
we explain the design consideration with dynamic power
optimization as an example of various feasible services.

One of the major dynamic power saving techniques is
DVFS, which is traditionally provided on a chip-wide domain

Switch

NI

PE

Cell

Agent
DVS

Voltage and

frequency

regulator

Vdd, Clk

Control line

FIFO

FIFO

(a) Cell-level DVFS (showing
one cell)

Switch

NI

PE

Cell

Agent DVS
Voltage and

frequency

regulator

Control line

Switch

NI

PE

Switch

NI

PE

Switch

NI

Cluster Agent

FIFO

FIFO FIFO

FIFO

Cell

Agent

Cell

Agent

Vdd,

Clk

A Cluster

(b) Cluster-level DVFS (showing one cluster)

Figure 3. Power Optimization Services by Different Agent Levels

[13]. But chip-level single power domain is not able to utilize
the local traffic variation in exploiting the supply scaling
potential, thus per-core based DVFS is proposed [14]. In the
cell-divided NoC platform, a cell can be conveniently set with
a supply regulator with the cell agent in charge of the voltage
and frequency adjustment (Fig. 3(a)). The overhead for per-cell
based DVFS is significant. [15] reports 0.14mm2 area overhead
and 83.2% peak efficiency of a DC-DC converter in 90nm
technology. Each time the voltage is converted, extra energy
will be consumed for the power regulation.

To alleviate the per-core-based DVFS overhead, the concept
of voltage islands [16, 17] has been proposed. Up-to-date,
voltage islands are statically determined at design time. To
incorporate multiple voltage islands on the NoC platform, each
cluster agent determines the voltage and frequency for its own
cluster (Fig. 3(b)). The area and energy overhead is reduced
proportional to the number of cells in a cluster. Per-cluster-
based power optimization, however, does not support the
reconfiguration of cells into different clusters at the run-time,
though assigning spares into clusters initially still provides cell
replacement possibilities against component failures.

The granularity of monitoring services is a design choice
dependent on the size of the actual platform, the workload and
constraints of the application. In terms of power optimization,
per-cluster-based monitoring with lower implementation over-
head seems to be more feasible in the long term with smaller-
sized processing cores. In general, any monitoring service can

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 60

be configured at the design time or execution time (with the
support of reconfigurable platform) to be handled by different
level of agents, correspondingly in various granularities.

IV. DESIGN TRADE-OFFS FOR AGENT COMMUNICATION

A. Monitoring Communication Interconnect Alternatives

Agents exchange monitoring information with their higher
or lower counterparts as illustrated in Fig. 1. The monitoring
communication needs to be reconfigurable so new cells can
be incorporated to certain clusters at the run-time. Some
conventional interconnection does not support reconfiguration
(for instance, the star-like network as in Fig. 4). Instead,
we consider three interconnect alternatives which all support
run-time reconfiguration but have different area, energy and
latency overheads. Throughput is not a prioritized design
constraint, since the monitoring communication is low in data
volume ([18] reports 8% and 5% debugging monitoring traffic
overhead for two streaming applications).

Cell Cell

Cluster

Agent

Cell Cell

Spare

Spare

Cell Cell

Cluster

Agent

Cell Cell

Data link Monitoring link

Figure 4. Non-reconfigurable Star Networks for Agent Monitoring Intercon-
nect

The first alternative is to realize monitoring communication
as TDM (Time-Division-Multiplexing)-based virtual channel
upon existing links. This option incurs design complexity in
virtual channel arbitration and allocation, increases the switch
latency of both monitoring interconnect and data communica-
tion. The virtual channel arbitration and allocation also incur
energy overhead. Wiring overhead, however, is kept to the
minimum though the switch area is moderately increased.

Platform

Agent

Cell Cell Cell Cell Cell

Cell
Cluster

agent
Cell

Cell Cell
Cluster

agent

Cell Cell Cell Cell Cell

Cell Cell Cell Cell

Cell

Cluster

agent
Cell

Cluster

agent

Data links

Monitoring links for

cluster - cell

communication

Monitoring links for

platform - cluster

communication

Separate Dedicated Monitoring Networks

Cell Cell Cell Cell Cell

Cell
Cluster

agent
Cell

Cell Cell
Cluster

agent

Cell Cell Cell Cell Cell

Cell Cell Cell Cell

Cell

Cluster

agent
Cell

Cluster

agent

Platform

Agent

Data links Monitoring links

Unified Dedicated Monitoring Network

Figure 5. Alternative Dedicated Monitoring Interconnect Architectures

The second alternative is to adopt a “unified dedicated mon-
itoring network” for monitoring communication (Fig. 5 on the

left side). It is called “unified” as monitoring communication
between both cluster-cell agents and platform-cluster agents is
transmitted on the same dedicated network. This option utilizes
more wiring resources but simplifies the switch arbitration
between data and monitoring communication, thus reducing
the communication energy and latency.

The third alternative is to adopt “separate dedicated moni-
toring networks” for monitoring communication (Fig. 5 on the
right side). Compared to the unified monitoring network, this
option adds another network connecting the single platform
agent to a small number of cluster agents. As a result, the
communication between platform and the cluster agents is
simplified with very limited wiring overhead.

B. Quantitative Analysis of Monitoring Interconnects

To quantitatively compare the implementation overhead
of three monitoring interconnect architecture, we model a
network similar to the TeraFLOPS processor in the same
65nm technology. The network has 8*8 processing elements
mapped on a regular tile-based mesh topology. We assume
input-buffered pipelined switches with the structure suggested
by [19] with matrix crossbar [20]. For TDM channels, each
input buffer is 4-flit long while the unified separate network
has 2-flit-long input buffer considering the higher traffic load
of data communication. The other dedicated network for
communication between cluster agents and the platform agent
assumes no buffer since the traffic on this network is exclusive
and infrequent. The arbitration assumes wormhole routing.
NoC links are modeled as segmented wires with drivers and
evenly inserted repeaters1. Data links are 32 bits wide and
2 mm long 2, and dedicated monitoring link is 8-bit wide
and equally long. The locations of the platform agent, cluster
agents and cells (with cell agents) are illustrated in Fig. 6.
The whole NoC system is assumed to be mesochronous with
network frequency as 1GHz and the supply voltage as 1V.

Cell Cell

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Platform

Agent
Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cluster

Agent
Cell

Cell Cell

Cell Cell

Cell Cell

Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

Cell Cell

(5,5)

Cluster

Agent

Cluster

Agent

Cluster

Agent

(3,3)

(3,7) (7,7)

(7,3)

Figure 6. Locations of Platform, Cluster and Cell Agents in the Experimental
Platform (with initial cluster boundary labeled)

We estimate the area and energy overhead of switches by
simulating with Orion [21], a widely-used on-chip switch

1wire width: 210nm; spacing: 210nm; repeater interval: 0.25mm; repeater
size: 10x minimal inverter size; driver size: 12x.

2TeraFLOPS uses 2mm * 1.5 mm tiles, while we simplify the tiles to be
2 mm * 2 mm squares

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 61

power simulator. The switch latency is estimated based on
[19]. The wires are modeled and simulated by Cadence. The
Orion simulator does not produce result for 65nm technology
directly, thus we apply scaling factors (based on [22]) to the
result of 70nm technology simulation using Orion. The scaling
factors for energy, area, and latency are 0.86, 0.86 and 0.93
respectively. The energy of wires are simulated by Cadence.
The latency in the switch buffer assumes an average 50%
occupancy ratio.

1) Latency: The latency is calculated in cycles considering
the longest distances between the platform agent and a cluster
agent and between a cluster agent to one of its cell agent. From
Fig. 6, we see that both distances are at maximum 4 hop counts
with minimal routing. The wire latency is simulated to be
198ps, and each pipeline stage latency in switches is estimated
to be lower than 300ps ([19], assuming an FO4 inverter delay
to be 15ps in 65nm technology). With 1GHz frequency, each
link and one router pipeline stage (virtual channel allocation,
routing and decoding, crossbar traversal) take 1 cycle delay.
Table I summarizes the latency comparison for monitoring
communication in each interconnect architecture.

Interconnect Architecture Delay
(cluster <->
cell agents)

Delay (platform
<-> cluster

agents)
TDM-based 24 cycles 24 cycles

Unified Dedicated Network 16 cycles 16 cycles
Separate Dedicated Networks 16 cycles 8 cycles

Table I
LATENCY COMPARISON OF THREE MONITORING INTERCONNECT

ARCHITECTURES (NETWORK WORKING AT 1GHZ)

2) Energy Consumption: The energy is calculated by the
amount of energy consumed by a 8-bit flit (as we assume
dedicated monitoring networks are 8-bit wide) traversing on
the longest paths between the platform agent and a cluster
agent, and between a cluster agent to one of its cell agent (4
hop counts as in Fig. 6 with no misrouting). Table II summa-
rizes the energy consumption for monitoring communication
in each interconnect architecture.

Interconnect Architecture Energy
(cluster <->
cell agents)

Energy
(platform <->
cluster agents)

TDM-based 12.92 pJ 12.92 pJ
Unified Dedicated Network 5.40 pJ 5.40 pJ

Separate Dedicated Networks 5.40 pJ 2.31 pJ

Table II
ONE-FLIT MONITORING COMMUNICATION ENERGY OF THREE

MONITORING INTERCONNECT ARCHITECTURES (NETWORK WORKING AT
1GHZ)

3) Area : We analyzed the total wiring and switch area for
each interconnect architecture as a percentage of a TeraFLOPS
chip (275mm2) (Table III).

Interconnect Architecture Area (mm2) Percentage (of
a chip area)

TDM-based 7.44 2.71%
Unified Dedicated Network 8.95 3.26%

Separate Dedicated Networks 9.11 3.32%

Table III
AREA OVERHEAD OF THREE MONITORING INTERCONNECT

ARCHITECTURES

C. Optimal Design Trade-off for Future NoCs

The estimated figures show that separate dedicated moni-
toring networks are the most energy-efficient and low-latency
interconnection for monitoring communication. Compared to
TDM-based interconnection, it reduces the latency by 66.7%
and energy consumption 82.1% for the communication be-
tween the platform and cluster agents, while achieving the
same latency and energy efficiency as unified dedicated net-
work for the communication between the cluster and cell
agents. However there is area penalty involved: the area
overhead is increased from 2.71% to 3.32%. Nonetheless the
wiring area overhead has become less of a design constraint
as multi-layer fabrication process provides quite abundant
wiring potential for on-chip systems ([8]; TILE64 processors
incorporate 5 physically separate networks, each of them being
64-bit wide). With transistor feature size and wire dimension
continue to decrease in the foreseeable future, the separate
monitoring networks will provide the most optimal trade-
off exploiting the on-chip wiring resources while minimizing
the more critical power consumption and global interconnect
latency.

V. CONCLUSIONS

Hierarchical agent monitoring architecture provides great
scalability and design flexibility for future large-scale NoC
systems. With an extra monitoring layer comprised of four
levels of agents, the system is potentially able to achieve
maximized efficiency with online monitoring services. This
paper elaborately explains the hierarchical monitoring ap-
proaches enabled by the interactions of all levels of agents,
and examines the design alternatives for low-power opti-
mization of different granularities as an example of flexible
functional partitions among agent levels. Quantitative analy-
sis for agent interconnection alternatives suggests reasonable
trade-offs between area, energy and latency overhead, and
motivates separate dedicated monitoring networks for inter-
agent communication. This work demonstrates the potential
and feasibility of multi-level online monitoring layer upon the
overwhelming amount of on-chip resources, which provides a
great diversity of design options in a scalable manner.

At present, specific monitoring services on regular NoC
platform with the proposed architecture is under intensive
study and analysis.

REFERENCES

[1] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, V. Erra-

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 62

guntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar.
An 80-tile sub-100-w teraflops processor in 65-nm cmos.
IEEE Journal of Solid-State Circuits, 43(1):29–41, 2008.

[2] Shane Bell, Bruce Edwards, John Amann, Rich Conlin,
Kevin Joyce, Vince Leung, John MacKay, Mike Reif,
Liewei Bao, John Brown, Matthew Mattina, Chyi-Chang
Miao, Carl Ramey, David Wentzlaff, Walker Ander-
son, Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan
Montenegro, Jay Stickney, and John Zook. Tile64tm
processor: A 64-core soc with mesh interconnect. In
Proc. Digest of Technical Papers. IEEE International
Solid-State Circuits Conference ISSCC 2008, pages 88–
598, 2008.

[3] Shekhar Borkar. Thousand core chips: a technology
perspective. In DAC ’07: Proceedings of the 44th annual
conference on Design automation, pages 746–749, New
York, NY, USA, 2007. ACM.

[4] Jan M. Rabaey. Scaling the power wall: Revisiting the
low-power design rules. Keynote speech at SoC 07
Symposium, Tampere, November 2007.

[5] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch,
B. L. Ji, S. R. Nassif, E. J. Nowak, D. J. Pearson, and
N. J. Rohrer. High-performance cmos variability in the
65-nm regime and beyond. IBM Journal of Research and
Development, 50(4/5):433–449, 2006.

[6] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and
J. Meerbergen. An event-based network-on-chip moni-
toring service. In Proc. of the 9th IEEE International
High-Level Design Validation and Test Workshop, pages
149–154, 2004.

[7] C. Ciordas, K. Goossens, A. Radulescu, and T. Basten.
Noc monitoring: impact on the design flow. In Proc.
IEEE International Symposium on Circuits and Systems
ISCAS 2006, pages 1981–1984, 2006.

[8] D. Wentzlaff, P. Griffin, H. Hoffmann, Liewei Bao,
B. Edwards, C. Ramey, M. Mattina, Chyi-Chang Miao,
J.F. Brown, and A. Agarwal. On-chip interconnection ar-
chitecture of the tile processor. IEEE MICRO, 27(5):15–
31, 2007.

[9] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adap-
tive self-healing architecture for unpredictable silicon.
IEEE Design & Test of Computers, 23(6):484–490, 2006.

[10] Jingcao Hu and R. Marculescu. Energy and performance-
aware mapping for regular noc architectures. IEEE
Transactions on COMPUTER-AIDED DESIGN of Inte-
grated Circuits and Systems, 24(4):551–562, 2005.

[11] Teijo Lehtonen, Pasi Liljeberg, and Juha Plosila. Online
reconfigurable self-timed links for fault tolerant noc.
VLSI Design, 2007:13, 2007.

[12] S.M. Martin, K. Flautner, T. Mudge, and D. Blaauw.
Combined dynamic voltage scaling and adaptive body
biasing for lower power microprocessors under dynamic
workloads. In Proc. IEEE/ACM International Conference
on Computer Aided Design ICCAD 2002, pages 721–
725, 2002.

[13] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher,

Pradip Bose, and Margaret Martonosi. An analysis of
efficient multi-core global power management policies:
Maximizing performance for a given power budget. In
Proc. of 39th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO-39), pages 347–358,
2006.

[14] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks.
System level analysis of fast, per-core dvfs using on-
chip switching regulators. In International symposium
on high-performance computer architecture, Feb. 2008.

[15] P. Hazucha, G. Schrom, Jaehong Hahn, B.A. Bloechel,
P. Hack, G.E. Dermer, S. Narendra, D. Gardner,
T. Karnik, V. De, and S. Borkar. A 233-mhz 80%-
87% efficient four-phase dc-dc converter utilizing air-
core inductors on package. IEEE Journal of Solid-State
Circuits, 40(4):838–845, 2005.

[16] Lap-Fai Leung and Chi-Ying Tsui. Energy-aware syn-
thesis of networks-on-chip implemented with voltage
islands. In Proc. 44th ACM/IEEE Design Automation
Conference DAC ’07, pages 128–131, 2007.

[17] D.E. Lackey, P.S. Zuchowski, T.R. Bednar, D.W. Stout,
S.W. Gould, and J.M. Cohn. Managing power and
performance for system-on-chip designs using voltage
islands. In Proc. IEEE/ACM International Conference
on Computer Aided Design ICCAD 2002, pages 195–
202, 2002.

[18] C. Ciordas, K. Goossens, T. Basten, A. Radulescu, and
A. Boon. Transaction monitoring in networks on chip:
The on-chip run-time perspective. In Proc. International
Symposium on Industrial Embedded Systems IES ’06,
pages 1–10, 2006.

[19] L.-S. Peh and W.J. Dally. A delay model and speculative
architecture for pipelined routers. In Proc. of The
Seventh International Symposium on High-Performance
Computer Architecture, pages 255–266, 19–24 Jan. 2001.

[20] Hangsheng Wang. a detailed architectural-level power
model for router buffers, crossbars and arbiters. Technical
report, Department of Electrical Engineering, Princeton
University, 2004.

[21] Hang-Sheng Wang, Xinping Zhu, Li-Shiuan Peh, and
S. Malik. Orion: a power-performance simulator for in-
terconnection networks. In Proc. 35th Annual IEEE/ACM
International Symposium on (MICRO-35) Microarchitec-
ture, pages 294–305, 2002.

[22] W. Haensch, E. J. Nowak, R. H. Dennard, P. M. Solomon,
A. Bryant, O. H. Dokumaci, A. Kumar, X. Wang, J. B.
Johnson, and M. V. Fischetti. Silicon cmos devices
beyond scaling. IBM Journal of Research and Devel-
opment, 50(4/5):339–361, 2006.

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 63

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 64

Author Index

Bharadwaj Amrutur..30

Nader Bagherzadeh...14, 22

Jun Ho Bahn... 22

Yang Cao.. 37

Manfred Glesner...6

Liang Guang... 58

Ahmed Hemani...51

Thomas Hollstein..6

Wen-Hsiang Hu.. 14

Jouni Isoaho..58

Duato José.. 1

Shashi Kumar.. I

Seugn Eun Lee..14

Xiaohui Li...37

Pasi Liljeberg..58

Ethiopia Nigussie... 58

Ian O'Connor.. 44

Maurizio Palesi..i

Pekka Rantala... 58

Faizal Arya Samman.. 6

Alberto Scandurra.. 44

Muhammad Ali Shami..51

Basavaraj Talwar...30

Hannu Tenhunen...58

Liwei Wang...37

Alexander Wei Yin... 58

Xiaohu Zhu...37

NoCArc 2008 — November 8th, 2008, Lake Como, Italy 65

