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Abstract

The paper presents two new approaches to multi-
objective design space exploration for parametric VLSI sys-
tems. Both considerably reduce the number of simulations
needed to determine the Pareto-optimal set as compared
with an exhaustive approach. The first uses sensitivity anal-
ysis while the second uses evolutionary computing tech-
niques. Application to a highly parametric system-on-a-
chip for digital camera applications shows the validity of
the methodologies presented in terms of both accuracy of
results and efficiency, measured as the number of simula-
tions needed to determine the power/execution-time trade-
off front.

1 Introduction

Current technology makes it possible to integrate many
more transistors than a VLSI system designer can use on
a single silicon die. If design methodologies remain un-
changed, the productivity gap will become increasingly ev-
ident [2]. A comparison can be made with what happened
with software from the 80s onwards — the sudden abun-
dance of memory shifted the design paradigm from optimi-
sation in size towards methodologies that would allow for
portability and reuse (first in the form of parametric subrou-
tines and then in the form of parametric objects). In turn, a
new approach is being introduced in the hardware sector —
IP-based design in which a highly parametric pre-designed
system-on-a-chip (SOC) is configured according to the ap-
plication it will have to execute.

This new approach called configure-and-execute [12] is
based on the presence of highly parametric IPs (Intellectual
Properties) representing the basic components of a SOC.
Once the architecture of a system has been designed, that is,
it has been decided which IPs to use, it is necessary to find
the optimal configuration for them according to the specific

application (or set of applications) that have to be executed.
The values chosen for these parameters (bus sizes, coding
techniques, cache parameters, arbitration schemes, etc.) are
those that optimise a function which almost always depends
on three main variables: area, power and performance.

The greatest problems in this area regard exploration of
the range of possible system configurations in search of the
optimal configuration for a given application. There are, in
fact, a number of parameters involved (bus sizes, cache con-
figurations, software algorithms, etc.), each of which has a
great impact on design constraints such as area, power and
performance. An exhaustive analysis of all possible config-
urations is thus computationally unfeasible.

Research in the field of parameterized system design has
led to the definition of various approaches to explore the
range of configurations. In [6] sensitivity analysis was used
to search for the configuration that minimises the power-
delay product for a cache memory. In [3] mono-objective
genetic algorithms (GAs) were used to search for optimal
configurations in terms of area, power and average access
time for a memory hierarchy. In [7] a system comprising a
CPU, caches and main memory and the interfaces between
these cores was analysed to show the power-performance
trade-off for various technologies. Of course, any technique
used to explore a range of configurations requires tools to
evaluate the configurations and thus system-level simula-
tion and estimation techniques. These tools have to be ca-
pable of performing system-level simulations in as short a
time as possible as well as estimating variables that are typ-
ical of a lower level of abstraction (e.g. clock cycles, power
consumption) with an adequate level of accuracy. In [8]
the authors used power estimation data obtained from the
gate-level for a cores representative input stimuli data, and
propagated this data to a higher (object-oriented) system-
level model, which is parameterizable and executable. They
achieved simulation speedups of over 1000 with accuracies
suitable for making reliable power-related system-level de-
sign decisions. In [9] the same authors describe a method

Proceedings of the 15th International Conference on VLSI Design (VLSID�02) 
0-7695-1441-3/02 $17.00 © 2002 IEEE 



for speeding up the evaluation further, through the use of in-
struction traces and trace simulators for every core, not just
the microprocessor core.

The aim of this paper is to present a generalmethodology
to search for the Pareto-optimal set of configurations of a
parameterized system that optimise the system in relation to
various objectives. The methodology uses multi-objective
optimisation techniques based on genetic algorithms. The
results obtained in a case study (a highly parametric SOC
for digital camera applications) show the efficiency of the
approach in terms of both accuracy and the number of sim-
ulations required for the exploration.

The paper is structured as follows. In Section 2 the prob-
lem will be formally stated and a survey of multi-objective
optimisation techniques based on genetic algorithms will be
given. In Section 3 two new approaches to design space
exploration will be presented and then applied to deter-
mine the power/performance trade-off for a highly paramet-
ric system described in Section 4 together with the results
obtained. Finally, Section 5 provides our conclusions and
indications as to future developments.

2 Statement of the Problem

Exploration of a range of configurations for a parameter-
ized system involves multiple measures of performance, or
objectives (in a VLSI system, for example, area, power and
delay...) which should be optimised simultaneously. Often
optimal performance according to one objective, if such an
optimum exists, implies unacceptably low performance in
one or more of the other objective dimensions, creating a
need for a compromise to be reached.

Exploration of a range of configurations for a parame-
terized system can be defined as a set of techniques and
strategies to be used to determine mutually non-dominated
configurations (the concept of dominance will be explained
below). The solution to these problems falls into the multi-
objective optimisation strategy class. Multiobjective opti-
misation (also called multicriteria optimisation, multiper-
formance or vector evaluation) can be defined as the prob-
lem of finding [4]: “a vector of decision variables which
satisfies constraints and optimises a vector function whose
elements represent the objective functions. These func-
tions form a mathematical description of performance cri-
teria which are usually in conflict with each other. Hence,
the term “optimise” means finding a solution which would
give values for all the objective functions such as to be ac-
ceptable to the designer.”

In formal terms we can define the problem in this way:
find the vector c� = [p�1; p

�
2; : : : ; p

�
P ]

T which will satisfy
them inequality constraints:

gi(c) � 0 i = 1; 2; : : : ;m (1)

the n equality constraints

hi(c) = 0 i = 1; 2; : : : ; n (2)

and optimizes the vector function

f(c) = [f1(c); f2(c); : : : ; fN(c)]
T (3)

where c = [p1; p2; : : : ; pP ]
T is the vector of decision vari-

ables.
That is, it is necessary to extract from the set F vectors

c� that will satisfy 1 and 2 the vectors that optimise all the
components of the objective function vector f(c).

Multiobjective optimisation dates back to Vilfredo
Pareto’s treatise on political economy in [10]. We say that a
point c� 2 F is Pareto optimal if for every c 2 F either,

^

i2I

(fi(c) = fi(c
�))

or, there is at least one i 2 I such that

fi(c) > fi(c
�)

This definition states that c� is Pareto optimal if there exist
no vectors c 2 F that decrease the value of any component
of the cost function (assuming that the objective function
is a cost function to be minimised) without increasing the
value of another component of the cost function. Unfortu-
nately, the Pareto optimum is not a single one but a set of
solutions called non-inferior or non-dominated solutions.

3 Design Space Exploration

The main aim in defining a methodology for design
space exploration (DSE) of a parametric system is to gen-
erate the Pareto-optimal set of configurations that optimise
towards several objectives. Evaluation of a generic configu-
ration to determine the parameter values towards which op-
timisation should aim requires configuration and simulation
of the system. Simulation of a complex system is gener-
ally a computationally onerous operation in terms of CPU
time. So a methodology based on an exhaustive search for
the Pareto-optimal set in unfeasible since the space of con-
figurations is equal to the product of the cardinalities of the
sets of values each parameter takes.

The use of heuristic techniques can help to reduce the
space of configurations that have to be analysed by identi-
fying and discarding any Pareto-dominated [6] configura-
tions. Another approach presented in [3] proposes the use
of genetic algorithms as an efficient technique for DSE.

Both techniques reduce the problem of multi-objective
optimisation to one of scalar optimisation by aggregation of
the objective functions [13, 11].

2

Proceedings of the 15th International Conference on VLSI Design (VLSID�02) 
0-7695-1441-3/02 $17.00 © 2002 IEEE 



The main disadvantage to aggregation functions is that
they do not generate proper Pareto-optimal solutions in the
presence of non-convex search spaces, which is a serious
drawback in most real-world applications. These problems
are solved by Pareto-based approaches that select Pareto
non-dominated individuals from the rest of the population.
These individuals are then assigned the hightest rank and
eliminated from further contention. Another set of Pareto
non-dominated individuals are determined from the reman-
ing population and are assigned the next hightest rank. The
procedure is repeated until the whole population is suitably
ranked.

In the following subsections, the approaches based on
sensitivity analysis and GAs will be extended to conduct a
proper multi-criteria analysis of the notion of Pareto opti-
mum.

3.1 Pareto-Based Sensitivity Analysis

The sensitivity analysis (SA) presented in [6] reduces the
space of possible configurations in two phases. The aim of
the first phase is to identify the parameters which most in-
fluence the objective function to be optimised (sensitivity
analysis phase (SAP)). For a system with P parameters, de-
termination of the degree of sensitivity of each parameter
consists of fixing P�1 parameters and varying one of them,
determining the maximum range of variation of the objec-
tive function. One way to fix the parameters is to consider
the mean value of their variation set.

The next phase, design space exploration phase (DSEP),
identifies the optimal value for each parameter, from the
most to the least sensitive. If V(i) = fv

(i)
1 ; v

(i)
2 ; : : : ; v

(i)
Ni
g

is the set of values the parameter pi can take, the number of
configurations to be evaluated goes down from

QP
i=1Ni toPP

i=1Ni.
To understand how this approach works, let us consider

the following example. Let us assume that we want to find
the configuration of a cache memory in terms of size (S),
block size (BS) and associativity (A) that minimises the
power-delay product (PD). Let S, B and A respectively
be the set of possible values of the parameters S, B and
A. The SAP is performed as follows: we fix B = B0

and A = A0 and S is made to vary in S, obtaining the
set PD = fPD1; PD2; : : : ; PDjSjg of values of PD. If
PDmax = maxPD and PDmin = minPD, the sensitiv-
ity of the parameter S is sS = PDmax � PDmin. The
same procedure is repeated to determine the sensitivity of
the remaining parameters sB and sA.

Under the hypothesis that sS > sA > sB , the DSEP
proceeds as follows. We set A = A0 and B = B0 and
vary S 2 S, obtaining PD = fPD1; PD2; : : : ; PDjSjg
values of PD. If Sopt = minPD we fix S = Sopt and
B = B0 and vary A 2 A. Proceeding as previously, Aopt

is determined. In short, having fixed S = Sopt, A = Aopt

and varying B 2 B we determine Bopt. The configura-
tion hSopt; Bopt; Aopti will determine a PD value close to
PDmin.

To overcome the limits of a mono-objective approach we
extended the technique based on sensitivity analysis to per-
form multi-objective optimisation based on the notion of
Pareto optimum.

The SAP was modified by defining a new metric to mea-
sure the sensitivity of a parameter. We have defined the
sensitivity si of the i-th parameter as:

si = max
h;k2f1;2;::: ;Nig

dist(o
(i)
h ; o

(i)
k )

where dist is the Euclidean distance and o
(i)
j are the Ni

points in the n-dimensional space obtained by fixing P � 1
parameters and varying pi 2 V(i).

Indicating with Si a parameter order by decreasing de-
grees of sensitivity, i.e. such that sSi > sSi+1 , we defined
the DSEP as follows. Having fixed pS2 ; : : : ; pSP parame-
ters, pS1 2 V

(S1) is made to vary. From the NS1 points ob-
tained, the non-dominated configurations are extracted and
accumulated in the setND. At the second iteration for each
configuration in the set ND, pS2 2 V(S2) is made to vary.
From theNS2 �jNDj obtained, the non-dominated config-
urations are extracted and accumulated in the set ND. The
procedure is repeated for all the parameters whose sensitiv-
ity exceeds a certain threshold. At the end of the algorithm
the configurations in ND will represent the trade-off sur-
face identified. The algorithm 1 gives the pseudo-code of
the DSE procedure.

Algorithm 1 Pareto-based sensitivity analysis (design space
exploration phase).
Require: S1; S2; : : : ; Sm // sorted by sensitivity parame-
ter’s index
ND = fp�g // initialize non-dominated set
i = 1 // high sensitive parameter index
repeat
C = fg
for all c 2 ND do
for all v 2 V(Si) do
c[Si] = v

C = C
S
fcg

end for
end for
ND = ND

S
C

ND = ND n Dominated(ND) // remove dominated
solutions
i = i+ 1 // next high sensitive parameter

until i > P OR Sensitivity(Si) < MINSENSITIVITY
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3.2 Pareto-based Genetic Algorithms

In this paper we have considered multiobjective optimi-
sation techniques that use Pareto-based GAs. More specif-
ically, we chose the Strength Pareto EA (SPEA) [16, 15]
approach, which is very effective in sampling from along
the entire Pareto-optimal front and distributing the solutions
generated over the trade-off surface. The flow proposed is
shown in Figure 1. An initial population of configurations is
simulated to obtain an estimate of the parameters to be opti-
mised. Together with the constraint specifications, these pa-
rameters will be used by the genetic exploration algorithm
to generate the next population to be evaluated. The cycle
is repeated until a stop condition is met and Pareto-optimal
solutions are provided.

System−level
simulator

Estimator

Estimated
parameters

Pareto−optimal
solutions

Configuration

New
configuration

constraints
(e.g. power<x. area<y, ...)

Multiobjective
GA

Constraints

estimated parameters

configuration parameters
(e.g. cache size, bus width...)

(e.g. ex.time, power, area)

Figure 1. Design flow.

The algorithm was implemented using GAlib [14] (a
C++ library of genetic algorithm components). A config-
uration is represented by an individual of the population
whose genome defines its parameters. Each gene represents
a system parameter (defined by means of an allele) that only
codes values defined within the range that is admissible for
the parameter involved. Impossible configurations were ex-
cluded by using the approach classified in [5] as rejection of
unfeasible individuals.

4 Results

To test the methodologies proposed in Section 3 we used
the architecture shown in Figure 2. It is a highly paramet-
ric SOC for digital camera applications developed under
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Figure 2. Reference architecture.

the Dalton Project at the University of California at River-
side [1]. The project is an open source one and comprises
a parameterized simulation model of a system-on-a-chip
composed of an MIPS R3000 processor core, instruction
cache (I$), data cache (D$), memory, MIPS to instruction
cache bus, MIPS to data cache bus, instruction/data cache
to memory bus, bus bridge, peripheral bus, uart and codec.

Each core is parametric and Table 1 gives the free param-
eters and the set of admissible values. For each bus (data
bus or address bus) it is possible to configure the number
of lines and the encoding scheme to minimise the switch-
ing activity. The caches can be configured in size, line size
and associativity. For the UART it is possible to define the
transmission and reception buffer sizes, and for the JPEG
Codec the pixel width can be varied. In all there are 26
separate parameters, giving a total of 9:7 � 1015 possible
configurations.

There are two versions of the system: both a synthesis-
able VHDL version and a high-level model written in C++.
With this model it is possible to perform rapid simulations
of the system when it is executing an applications, as well
as estimating the execution time and power consumption by
using the estimation model described in [8].

The two methodologies were compared considering
three different applications. The first, image, copies a
bitmap from one memory region to another. The second,
key, works on large-size matrices. The third, matrix, per-
forms arithmetical operations on two 10x10 matrices of in-
tegers.

Figure 3 gives the power/execution-time trade-off front
for application key, obtained by applying the algorithms
described in the previous section. In applying the Pareto-
based sensitivity analysis (PBSA) three different thresholds
were used (10%, 5% and 1%). A lower threshold would
improve results (as more parameters are taken into consid-
eration) but would require a larger number of simulations.
The figure also gives the results obtained by using the ge-
netic approach (GA) after 20, 30 and 50 generations. In all
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Core Parameters Values Number

I & D Cache size 128B; 256B; 512B; : : : ; 64KB 10� 2
line 4B; 8B; 16B; : : : ; 128B 6� 2

associativity 1; 2; : : : ; 16B 5� 2
I$ & D$$ CPU dbus width 4; 8; : : : ; 32 4� 2

abus width 4; 8; 16; 32 4� 2
dbus encoding bin; gray; inv 3� 2
abus encoding bin; gray; inv 3� 2

$$MEM dbus width 4; 8; : : : ; 32 4
abus width 4; 8; 16; 32 4

dbus encoding bin; gray; inv 3
abus encoding bin; gray; inv 3

Peripheral bus dbus width 4; 8; 16; 32 4
abus width 4; 8; 16; 32 4

dbus encoding bin; gray; inv 3
abus encoding bin; gray; inv 3

UART TX buf size 1; 2; 4; 8; 16 5
RX buf size 1; 2; 4; 8; 16 5

Codec pixel width 10; 12 2
Global volt vs. freq (1:5; 33); (2:6; 57); (3:3; 72)(4:0; 88); (5:0; 110) 5

Total 26 9:7� 1015

Table 1. Free parameters and the set of admissible values for each core.

cases the size of the internal population was set as equal
to that of the external population, i.e. 50 individuals. The
crossover probability was set to 0.9 and the mutation prob-
ability to 0.01. Of course, only limited weight can be given
to a single run per algorithm. Nevertheless, the results were
similar when the experiments were repeated with different
initial populations. As can be seen, the results obtained by
the GA approach after only 10 generations are better than
those obtained by PBSA with a 1% threshold.
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Figure 3. power/execution time trade-off front
for application key.
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Figure 4. power/execution time trade-off front
for application image.

Figure 4 gives the results obtained for the image applica-
tion. Here again, the results obtained by the GA approach
are better than those obtained by PBSA after only 30 gener-
ations.

A comparison between the two approaches in terms of
efficiency, measured as the number of simulations run, is
shown in Table 2. In all the cases considered, the GA-
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Application PBSA GA
10% 5% 1% N=10 N=20 N=30 N=50

Image 142 502 9570 656 1622 2572 5082
Key 162 442 850 723 1523 2869 5016

Matrix 1024 2812 17126 700 1520 2692 4833

Table 2. Comparison between PBSA and GA in terms of efficiency measured as the number of
simulations run.

based approach gave better solutions than PBSA and re-
quired fewer simulations.

5 Conclusions

This paper has presented a new genetic algorithm-based
methodology for multi-objective exploration of the space of
configurations of a parameterized system. The methodol-
ogy has been compared with an approach based on sensitiv-
ity analysis, which we extended for multi-objective optimi-
sation purposes.

Both approaches were applied to determine the
power/performance trade-off of a highly parametric archi-
tecture implementing a SOC for digital camera applications
during the execution of different applications.

The two approaches were compared in terms of both ac-
curacy in determining the Pareto-optimal set and efficiency,
measured as the number of simulation required. In all the
tests performed, the power/performance trade-off generated
by the GA-based approach dominated that generated by the
sensitivity analysis-based approach and required on average
half as many simulations.
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