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Abstract: In this paper we present some new solutions for design space exploration of 
parameterized systems. The approaches use multi-objective optimisation 
techniques based on the concept of Pareto-optimality to determine the 
power/performance trade-off front for a highly parametric system-on-a-chip 
for digital camera applications. The approaches used are purely heuristic, 
genetic algorithm-based and a combination of the two. The results obtained 
demonstrate the effectiveness of the approaches in terms of both validity and 
efficiency, measured as the number of simulations run. 

1. INTRODUCTION 

With current technology it is possible to integrate hundreds of millions of 
transistors on a single silicon die. This large number of transistors means that 
a single chip can contain a complete processing systems with high-
performance CPUs, DSPs, co-processors, memories, and analog blocks that 
communicate via an extremely complex interconnection network. 
Unfortunately, the technological gap between the number of transistors that 
could be used and the number actually used is constantly on the increase [1]. 

This problem has partially been solved by the IP-based design approach 
that uses pre-designed and pre-verified cores as building blocks (as gates 
were previously used). These cores can also be supplied by third parties and 
can be in different forms (soft-, hard-, firm-cores) [2]. 

A new approach to IP-based design, called configure-and-execute was 
proposed in [3] and is based on the presence of a highly parametric pre-
designed system-on-a-chip or (SOC platform) which is configured according 
to the application or set of applications it will have to execute.  

Once the designer has chosen the SOC platform on which the application 
is to be mapped, he passes to the tuning phase to search for a parameter 
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configuration such as to optimise an objective function that almost always 
depends on three variables—area, power and performance. 

Research in the field of parameterized system design has led to the 
definition of various approaches to explore the range of configurations. In 
[ 4 ] sensitivity analysis was used to search for the configuration that 
minimises the power-delay product for a cache memory. In [ 5 ] mono-
objective genetic algorithms (GAs) were used to search for optimal 
configurations in terms of area, power and average access time for a memory 
hierarchy. In [6] a system comprising a CPU, caches and main memory and 
the interfaces between these cores was analysed to show the power-
performance trade-off for various technologies.  

This paper presents three new approaches to design space exploration 
(DSE) for parameterized systems. The approaches use multi-objective 
optimisation techniques based on the concept of Pareto optimality. The first 
approach is an extension of sensitivity analysis [4] to multi-objective 
optimisation, the second uses multi-objective evolutionary programming 
techniques, and the third is a combination of the previous two. The results 
obtained in a case study (a highly parametric SOC for digital camera 
applications) show the effectiveness of using evolutionary programming 
techniques for DSE in terms of both accuracy and efficiency, measured as 
the number of simulations run. 

The paper is structured as follows. In Section 2 the problem will be  
stated and a survey of multi-objective optimisation techniques based on 
genetic algorithms will be given. In Section 3 three new approaches to 
design space exploration will be presented and then applied to determine the 
power/performance trade-off for a highly parametric system described in 
Section 4 together with the results obtained. Finally, Section 5 provides our 
conclusions and indications as to future developments. 

2. PROBLEM FORMULATION 

Let there be a parametric system S in which each of the N parameters pi 
can take a value belonging to a finite set V(i). We will call a configuration of 
the system S an N-tuple (v1,v2,…,vN) with vi ∈ V(i) such that p1=v1,  p2=v2 and 
so on. We will indicate the space of configurations of the system S,  i.e. all 
the configurations the system can possibly have, as C(S). This set will 
correspond to the cartesian product of the sets of variation of each system 
parameter and its size will therefore be ∏N

i=1V(i). Let there be M cost 
functions fi:C(S)→R (i=1,2,…,M) which associate a real value with each 
possible configuration of the system. The problem is to find an efficient way 
to search for the Pareto-optimal configurations given the cost functions fi. 
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Problems of this kind are particularly felt in VLSI design, especially that 
of systems-on-chips (SOCs). A system involving the interconnection of 
several parametric, heterogeneous functional blocks has to be configured in 
such a way as to find the Pareto-optimal configurations which are typically  
in terms of area, power and execution time. Beside the basic problem of the 
enormous size of the space of possible system configurations, another great 
problem is that of evaluating the costs functions for a given configuration. 
This is a computationally onerous task, especially for complex systems like 
SOCs. First of all, in fact, it requires the system to be configured according 
to the given configuration, then execution of the application, and finally 
measurement (or estimation) of the variables of interest. It is therefore clear 
that a technique to search for the Pareto-optimal configurations of a 
parameterised SOC based on an exhaustive approach is unfeasible. 

The use of heuristic techniques can help to reduce the space of 
configurations that have to be analysed by identifying and discarding any 
Pareto-dominated [4] configurations. Another approach presented in [5] 
proposes the use of genetic algorithms as an efficient technique for DSE. 

Both techniques reduce the problem of multi-objective optimisation to 
one of scalar optimisation by aggregation of the objective functions [7],[8]. 

The main disadvantage to aggregation functions is that they do not 
generate proper Pareto-optimal solutions in the presence of non-convex 
search spaces, which is a serious drawback in most real-world applications. 
These problems are solved by Pareto-based approaches that select Pareto 
non-dominated individuals from the rest of the population. These individuals 
are then assigned the hightest rank and eliminated from further contention. 
Another set of Pareto non-dominated individuals are determined from the 
remaning population and are assigned the next hightest rank. The procedure 
is repeated until the whole population is suitably ranked. 

3. NEW MULTI-OBJECTIVE APPROACHES FOR 
SYSTEM LEVEL EXPLORATION 

In the following subsections, the approaches based on sensitivity analysis 
and GAs will be extended to conduct a proper multi-criteria analysis of the 
notion of Pareto optimum. 

3.1 Pareto-Based Sensitivity Analysis 

The sensitivity analysis (SA) presented in [4] reduces the space of 
possible configurations in two phases. The first phase identifies the 
parameters which most influence the objective function to be optimised 
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(sensitivity analysis phase (SAP)). For a system with P parameters, 
determination of the degree of sensitivity of each parameter consists of 
fixing P-1 parameters and varying one of them, determining the maximum 
range of variation of the objective function. One way to fix the parameters is 
to consider the mean value of their variation set. 

The next phase, design space exploration phase (DSEP), identifies the 
optimal value for each parameter, from the most to the least sensitive. If 
V(i)={v1

(i),…,vNi
(i)} is the set of values the parameter pi can take, the number 

of configurations to be evaluated goes down from ∏ =
P
i iN1  to ∑ =

P
i iN1 . 

To understand how this approach works, let us consider the following 
example. Let us assume that we want to find the configuration of a cache 
memory in terms of size (s), block size (b) and associativity (a) that 
minimises the power-delay product (pd). Let S, B and A respectively be the 
set of possible values of the parameters s, b and a. The SAP is performed as 
follows: we fix b=b0 and a=a0 and s is made to vary in S, obtaining the set 
PD={PD1,PD2…,PD|S|} of values of pd. If pdmax=max(PD) and 
pdmin=min(PD), the sensitivity of the parameter s is sS=pdmax - pdmin. The 
same procedure is repeated for the remaining parameters sB and sA. 

Under the hypothesis that sS>sA>sB, we set a=a0, b=b0 and vary s∈S, 
obtaining PD={PD1,..,PD|S|,} values of pd. If sopt=min(PD), we fix s=sopt and 
b=b0 and vary a∈A. Proceeding as previously, aopt is determined. In short, 
having fixed s=sopt, a=aopt and varying b∈B we determine bopt. The 
configuration 〈sopt, bopt, aopt〉 will determine a pd value close to pdmin. 
Algorithm 1 shows the generalization of the DSEP assuming all parameters 
sorted by decreasing values of sensitivity.  

 
Algorithm 1: Monono-objective sensitivity analysis (DSEP)  
for all i ∈ {1,2,…,P}

for all j ∈ {1,2,…,i-1}
vj = vj

opt

end for
for all j ∈ {i+1,i+2,…,P}

vj = vj0
end for
vi

opt = v1
(i)

for all j ∈ {2,3,…,Ni}
if f(v1,…, vj

(i),…,vP) < f(v1,…, vi
(opt),…, vP)

vi
(opt) = vj

(i)

end if
end for

end for 

To overcome the limits of a mono-objective approach we extended the 
technique based on sensitivity analysis to perform multi-objective 
optimisation based on the notion of Pareto optimum (PBSA). 

The SAP was modified by defining a new metric to measure the 
sensitivity of a parameter. We have defined the sensitivity si of the i-th 
parameter as:  
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where dist is the Euclidean distance and )(i
jo  are the Ni points in the n-

dimensional space obtained by fixing P-1 parameters and varying pi ∈ V(i). 
Indicating with Si a parameter order by decreasing degrees of sensitivity, 

i.e. such that sSi> sSi+1, we defined the DSEP as follows.  
Having fixed pS2,…, pSP parameters, pS1∈V(S1) is made to vary. From the 

NS1 points obtained, whose components represent the objective values, the 
non-dominated configurations are extracted and accumulated in a set P. At 
the second iteration for each configuration in the set P, pS2∈V(S2) is made to 
vary. From the NS1×|P| obtained, the non-dominated configurations are 
extracted and accumulated in the set P. The procedure is repeated for all the 
parameters pSi with i<ν, where ν is the first index such that sSi<T and T is a 
sensitivity threshold. Parameters whose sensitivity is less than T influence in 
a limited way the value of the objective functions. So they are fixed to a 
reference value. At the end of the algorithm the configurations in P will 
represent the trade-off surface identified. The Algorithm 2 gives the pseudo-
code of the DSE procedure. 

Algorithm 2: Pareto-based objective sensitivity analysis (PBSA)  
Require S1,S2,…,Sm //sorted by sensitivity parameter's index
ND = p* // initialize non-dominated set
i = 1 // high sensitive parameter index
Repeat
C={}
for all c ∈ ND
for all v ∈ V(Si)

c[Si]=v
C = C ∪ c

end for
end for
ND =ND ∪ C
ND = ND \ Dominated(ND) // remove dominated solutions
i = i + 1 // next high sensitive parameter

until (i>P OR Sensitivity(Si) < T)

3.2 Pareto-based Genetic Algorithms 

In this paper we consider multiobjective optimisation techniques that use 
Pareto-based GAs. More specifically, we chose the Strength Pareto EA 
(SPEA) [9] approach, which is very effective in sampling from along the 
entire Pareto-optimal front and distributing the solutions generated over the 
trade-off surface. The flow proposed is shown in Figure 1. An initial 
population of configurations is simulated to obtain an estimate of the 
parameters to be optimised. Together with the constraint specifications, these 
parameters will be used by the genetic exploration algorithm to generate the 
next population to be evaluated. The cycle is repeated until a stop condition 
is met and Pareto-optimal solutions are provided. 
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Figure 1. GA Design flow. 

The algorithm was implemented using GAlib [10] (a C++ library of 
genetic algorithm components). A configuration is represented by an 
individual of the population whose genome defines its parameters. Each 
gene represents a system parameter (defined by means of an allele) that only 
codes values defined within the range that is admissible for the parameter 
involved. Impossible configurations were excluded by using the approach 
classified in [11] as rejection of unfeasible individuals. 

3.3 A Mixed Approach 

A mixed approach can be used to exploit the potential of the two 
approaches presented in the previous subsections. The advantage of 
sensitivity analysis lies in its reduction of the configuration space by 
neglecting parameters that have less effect on the objective functions. The 
genetic approach, on the other hand, allows for rapid exploration of the 
space of configurations. We could therefore envisage defining the 
chromosome, using only the most sensitive parameters determined by the 
sensitivity analysis, to define a new mixed approach which we will call 
SAGA (Sensitivity Analysis Genetic Algorithm). 

Obviously the trade-off front obtained by SAGA will not be better than 
that obtained by the pure GA approach, given that the space of 
configurations on which SAGA operates is a subspace of the space on which 
the GA approach operates. As compared with PBSA, on the other hand, the 
solutions found will be better, as the parameter tuning is not constrained: any 
combination of parameter values is admissible. 
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Figure 2. Mixed approach design flow. 

The flow of operations performed by SAGA, Figure 2, is divided into 
two stages. In the first, the sensitivity analysis is performed and the 
parameters that exceed a certain sensitivity threshold are determined. These 
parameters will define the chromosome of the genetic algorithm that will be 
applied in the second stage. The remaining parameters that remain below the 
threshold are set to a reference value (e.g. the mean value of their range of 
variation). 

4. EXPERIMENTAL RESULTS 

In this section we will first describe the  parametric reference  
architecture and then apply the approaches described in the previous section. 

4.1 Reference Architecture 

To test the methodologies proposed in Section 3 we used the architecture 
shown in Figure 3. It is a highly parametric SOC for digital camera 
applications developed under the Dalton Project [12]. The project is an open 
source one and comprises a parameterized simulation model of a system-on-
a-chip composed of an MIPS R3000 processor core, instruction cache (I$), 
data cache (D$), memory, MIPS to instruction cache bus, MIPS to data 
cache bus, instruction/data cache to memory bus, bus bridge, peripheral bus, 
uart and codec. Each core is parametric. For each bus (data bus or address 
bus) it is possible to configure the number of lines and the encoding scheme 
to minimise the switching activity. The caches can be configured in size, line 
size and associativity. For the UART it is possible to define the transmission 
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and reception buffer sizes, and for the JPEG Codec the pixel width can be 
varied. In all there are 26 separate parameters, giving a total of 9.7×1015 
possible configurations. 

MIPS I$ D$ MEM

JPEG
codec Bridge

UART

System bus

Peripheral bus

 

Figure 3. Reference architecture. 

There are two versions of the system: both a synthesisable VHDL version 
and a high-level model written in C++. With this model it is possible to 
perform rapid simulations of the system when it is executing an applications, 
as well as estimating the execution time and power consumption by using 
the estimation model described in [13].  

4.2 Experiments 

The three approaches were compared considering three different 
applications. The first, image, copies a bitmap from one memory region to 
another. The second, key, works on large-size matrices. The third, matrix, 
performs arithmetical operations on two 10x10 matrices of integers. 

Figure 4 gives the power/execution-time trade-off for the image 
application, obtained using the three approaches. PBSA was executed with 
different threshold values. As was to be expected, when the threshold 
decreases more parameters are taken into consideration, thus leading to an 
improvement in the solutions obtained but an increase in the number of 
simulations required (respectively 1780, 4958 and 8633 for thresholds of 
10%, 5% and 1%). SAGA gives the same results as PBSA with a 1% 
threshold but after only 30 generations with internal and external populations 
of 50 individuals, and a total of 2238 simulations. With GA, after 50 
generations with internal and external populations of 50 individuals, a total 
of 4581 simulations gives dominant solutions as compared to those obtained 
with PBSA and SAGA. 

The same qualitative results are obtained in the other two applications -- 
key and matrix and Table 1 gives the number of simulations run by each 
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approach and the percent gain over PBSA. The results were obtained using a 
1% threshold for both PBSA and SAGA. For SAGA and GA we used an 
internal and external population of 50, a crossover probability of 0.9 and a 
mutation probability of 0.01. GA and SAGA respectively converged after 50 
and 30 generations for image and key and after 40 and 20 generations for 
matrix. 
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Figure 4. Power/execution time trade-off for the image application. 

PBSA GA SAGA 
Benchmark 

simulations simulations % saving simulations % saving 
Image 8633 4581 47.5 2238 74.1 
Key 11019 4587 58.4 2642 76 

Matrix 4372 3751 14.2 1714 60.8 
Total 24024 2919 46.2 6594 72.6 

Table 1. Number of simulations run by each approach and the percent gain over PBSA. 

In short, the solutions obtained with GA dominate those obtained with PBSA 
and are achieved with on average 46% fewer simulations. If we are willing 
to sacrifice the quality of the solutions to obtain an increase in efficiency, we 
can use the mixed SAGA approach, which gives solutions close to those 
obtained with GA but with 72% fewer simulations than PBSA. 

5. CONCLUSIONS 

In this paper we have presented three approaches to design space 
exploration for parameterized systems. The first approach is heuristic and is 
based on sensitivity analysis to reduce the space of configurations to be 
explored. The second uses multi-objective genetic algorithms, while the third 
is a mixture of the previous two, using sensitivity analysis to limit the space 
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of configurations and genetic algorithms to explore the subspace thus 
obtained. All three approaches were applied to determine the 
power/performance trade-off of a highly parametric architecture 
implementing a SOC for digital camera applications during the execution of 
different applications. The approaches were evaluated in terms of both the 
quality of the solutions obtained (using the concept of Pareto dominance) 
and efficiency, measured as the number of simulations required to determine 
the trade-off front. The results obtained show the effectiveness of the pure 
genetic approach as regards the quality of the solutions obtained, and the 
mixed approach in terms of efficiency.  
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