
EPIC-Explorer: A Parameterized VLIW-based
Platform Framework for Design Space Exploration

Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi and Davide Patti
Department of Computer Science and Telecommunications Engineering — University of Catania

Viale A. Doria, 6 — 95125 Catania, Italy�
gascia,vcatania,mpalesi,dpatti � @diit.unict.it

Abstract— The constant increase in levels of integration and
the reduction of the time-to-market have led to the definition
of new methodologies stressing reuse. This involves not only
the reuse of pre-designed processing components in the form
of intellectual properties (IPs) but also that of pre-designed
architectures. For such architectures to be reused for various
applications they have to be heavily parameterized. Several
manufacturers, in fact, produce pre-packed solutions for various
classes of applications, in the form of parameterized system-on-
a-chip (SOC) platforms. In this paper we present EPIC-Explorer,
a framework to simulate a parameterized VLIW-based platform
that will allow an embedded system designer to evaluate any
instance of the platform in terms of performance, area and power
consumption. The results obtained show that the framework can
be effectively used to explore the space of possible configurations
to evaluate the area/performance/power trade-off.

I. INTRODUCTION

The increase in levels of integration forecast for the coming
decade indicate an enormous increase in the number of tran-
sistors as compared with the previous decade and the imple-
mentation of a whole system on a single chip. Unfortunately,
the evolution of design methodologies cannot compete with
the increase in the capacity for integration, thus leading to
a “production gap” and under-use of transistors. Automatic
synthesis tools represent a first response to these problems. In
the past, the capture-and-simulate design paradigm [1] was the
most widely used and consisted of capturing the logic ports or
register-transfer components in a structural scheme which was
then simulated to verify its correctness. This approach was
recently replaced by the describe-and-synthesize paradigm, in
which the functions of a system are first described using an
appropriate language and then synthesised into an electronic
circuit using automatic synthesis tools.

The production gap continues to widen, however, and many
researchers propose approaches based on the reuse of previ-
ously designed and verified modules (design reuse). This is
essentially a return to the old capture-and-simulate approach,
but this time, instead of using logic ports as the building
blocks for a design, custom and/or standard modules known as
intellectual properties (IP) or simply cores are used. However,
when applied to the design of a system-on-a-chip (SOC), this
approach has created new problems that make application very
expensive and reserved for certain specific niches.

Platform-based design [2] was introduced several years ago
as a concept that would revolutionize chip design and redefine

the future of SOC. The basic idea behind the platform-based
design approach is to avoid designing a chip from scratch.
Some portion of the chip’s architecture is predefined for a
specific type of application. Usually there is a processor, a real-
time operating system (RTOS), peripheral intellectual property
(IP) blocks, some memory and bus structure. This implies that
the basic micro-architecture of the implementation is essen-
tially “fixed”, i.e., the principal components should remain the
same within a certain degree of parameterization [3]. Many
researchers predict that platforms will take the lion’s share of
the IC market [2], [3], [4], [5].

Prefabricated configurable platforms have many advantages,
including time-to-market and cost advantages through exten-
sive design reuse. The disadvantages are due to the fact
that a platform limits choices by reducing flexibility and
performance compared with a traditional ASIC or full-custom
design methodology.

On the one hand these platforms have to be sufficiently
general as to be used across several different applications and
on the other they have to be sufficiently simple to customize
to meet the constraints and requirements of the specific appli-
cation to be mapped on them. One solution to this problem
is to make the platform parametric [6]. Therefore, these
parameterized SOC platforms must be optimally configured to
meet varied power and performance requirements of a large
class of applications.

There are two main roles in this context: that of the
platform developer and that of the platform user. The platform
developer develops a platform oriented towards a certain
class of applications (e.g. television set-top boxes, digital
cameras, network switches, etc.) and makes it highly con-
figurable or programmable, in order to adapt to different
applications and design constraints. Programmability can come
in several forms [7], like general-purpose processors, field-
programmable logic, and tunable architecture parameters like
reshapable memory hierarchy, segmentable bus architectures,
and variable bit widths. Of course this configurability and
programmability uses far more transistors than more cus-
tomized designs, but with current and future integrated circuit
(IC) technologies, those transistors are readily available [8],
[9]. The platform user becomes the real embedded system
designer, whose role shifts from that of designing a whole
IC to that of programming functions on the platform.

In this paper we present a framework for analysis in terms

of area, performance and power of any instance deriving from
a parameterized platform based on a VLIW processor. Having
established the configuration of the system (having, that is,
defined the instance of the platform), any C application (for the
specific instance of the platform) is compiled and simulated,
the output obtained being the silicon area occupied, the total
number of clock cycles required to execute the application
and the total amount of energy consumed. The contribution
the paper intends to make is to provide the embedded system
designer with a tool that operates at the system level and allows
the designer to perform rapid evaluation at a high level of
abstraction of the impact of various architectural choices on
the variables to be optimized (area, power and performance).
The accuracy of the results obtained is guaranteed by the use of
estimation models widely tested and discussed in the literature.

The paper is organised as follows. In Section II we discuss
some of the most important contributions towards defining and
developing simulation software platforms. In Section III we
present the architecture of our platform, while Sections IV
and V describe the models used to estimate power and area. In
Section VI we demonstrate how the platform can be effectively
used for design space exploration, giving some experimental
results. Finally, Section VII provides our conclusions and
indications as to future developments.

II. PREVIOUS WORK

One of the main objectives of a system designer is to
assess the impact of certain architectural choices on the
variables to be optimized, from the highest levels of the
design flow downwards. Often, however, the design variables
to be optimized are typically observed at the lowest levels of
abstraction. These are some of the reasons that have driven
research towards the definition of estimation methodologies
that will allow designers to obtain predictions of the final
characteristics of a system at the higher levels of the design
flow. The relevant literature is full of contributions in this
context, ranging from characterization of the macroblocks
making up a system (e.g. cache, memories, buses, peripherals,
register files, microprocessors) [10], [11], [12], [13], [14]
to frameworks for the analysis of a system as a whole.
Most of the contributions belonging to this second category
mainly address evaluation of the impact on performance of the
architectural and micro-architectural features of the system.
SimpleScalar [15], for instance, provides an infrastructure
for computer system modeling that simplifies implementing
hardware models capable simulating complete applications.
During simulation, model instrumentation measures the dy-
namic characteristics of the hardware model and the per-
formance of the software running on it. Several platforms
have been built using SimpleScalar to obtain estimates of
power consumption as well as performance. Among these,
Wattch [16] is a framework for analyzing and optimizing
microprocessor power dissipation at the architecture level. It is
based on a suite of parameterizable power models for different
hardware structures and on per-cycle resource usage counts
generated through cycle-level simulation. Another example

is SimplePower [17] an execution-driven, cycle-accurate, RT
level power estimation tool that allow to evaluate the effect
of high-level algorithmic, architectural, and compilation trade-
offs on energy. It also provides the energy consumed in the
memory system and on-chip buses using analytical energy
model.

Wisconsin Architectural Research Tool Set (WARTS) [18]
is a collection of tools for profiling and tracing programs, ana-
lyzing program traces, and simulating computer architectures.
It contains a tool for profiling and tracing system, a cache
performance profiler, a cache simulators, a library for editing
executable files, a framework for memory system simulators,
and a fast and portable parallel architecture simulator.

Simics [19] is a full system simulation platform, that allow
to build your own virtual computer, or use pre-configured mod-
els, based on microprocessors such as Alpha, ARM, Itanium,
MIPS, Pentium, PowerPC, SPARC, and x86-64. It simulates
both uniprocessor and multiprocessor systems, provides a
common infrastructure for a broad variety of tasks, including:
microprocessor design; memory hierarchy design; component
development and testing; automated software quality testing;
SoC virtual prototypes; hardware-software co-simulation; and
the development of firmware, drivers, and operating systems.

SimOS [20] is a complete machine simulation environment
designed for the efficient and accurate study of both unipro-
cessor and multiprocessor computer systems. SimOS simulates
computer hardware in enough detail to boot and run commer-
cial operating systems. In addition to the CPU, it simulates
caches, multiprocessor memory busses, disk drives, ethernet,
consoles, etc. The SimOS environment also contains powerful
mechanisms for exploiting the high degree of visibility and
flexibility afforded by software simulation. The simulation
models of SimOS are heavily instrumented to collect statistics
about the simulated behavior.

ML-RSIM [21] is an event-driven cycle-accurate simulator
that integrates detailed processor and cache models with a
complete I/O subsystem. Combined with the Unix-compatible
Lamix operating system, ML-RSIM provides a unique tool
that allows researchers to study the interaction of computer
architecture, I/O activity, system software and applications.

RSIM [22] simulates shared-memory multiprocessors (and
uniprocessors) built from processors that aggressively exploit
instruction-level parallelism (ILP). RSIM is execution-driven
and models state-of-the-art ILP processors, an aggressive
memory system, and a multiprocessor coherence protocol
and interconnect, including contention at all resources. Most
processor parameters are user configurable for example, in-
struction issue width, instruction window size, and number
of functional units. It supports a two-level cache hierarchy
with separate first-level data and instruction caches and a
unified second-level cache. Most cache and memory system
parameters including the number of L1 cache ports, the
number of L1 or L2 MSHRs, cache sizes, and all latencies
are user configurable.

Finally Platune [23], a framework for performance and
power tuning of a SOC platform. The SOC platform consits

of a MIPS R3000 processor, a parameterized instruction and
data caches, an universal asynchronous receiver and trans-
mitter (UART) peripheral, a discrete cosine transform (DCT)
CODEC peripheral, a parameterized peripheral bus and a
parameterized system local bus connected by a bridge. Platune
is used to simulate an embedded application that is mapped
onto the SOC platform and output performance and power
metrics for any configuration of the SOC platform.

III. THE EPIC-EXPLORER PLATFORM

The main aim of the EPIC-Explorer platform presented
here is to provide the embedded system designer with a
framework for evaluating the impact of the architectural and
micro-architectural features of a hardware/software system
on area, power dissipation and overall system performance.
The platform can be used by both software and hardware
designers. The former are provided with a tool that will allow
an application to be evaluated as regards not only performance
but also power consumption, and thus permits optimisation in
this direction. The hardware designer can use it to determine
an optimal system configuration for a specific application (or
class of applications) in terms of area, performance and power
consumption.

In the following subsections we will describe the interfacing
between the estimation engines (for area and power dissi-
pation) and design space exploration and the Trimaran [24]
framework, and we will present the reference architecture.

A. The Data Flow

A key feature of how the EPIC Explorer platform operates
is the interface with Trimaran [24], a framework that provides
a parameterized compiler for EPIC/VLIW architectures and a
library for the generation of the dynamic execution statistics on
which the estimate of performance and power consumption is
to be based. Illustrating the details of the various components
of Trimaran lies beyond the scope of the paper. However, it is
sufficient to view Trimaran as a compiler that takes as input
the source code of an application and the description of the ar-
chitecture of the VLIW processor (number of functional units,
size of the register file, etc.), and performs the compilation,
that is, static scheduling of the operations inside the sequence
of bundles of instructions.

Following execution of the benchmark, Trimaran generates
a binary file (that can be executed on the host machine) that
simulates execution of the benchmark on the VLIW processor.
In order to consider the impact in terms of performance, area
and power of the memory hierarchy, a cache simulator based
on Dinero has been added to the platform. In addition, we have
also added models to estimate the area occupied and power
dissipated by the memory hierarchy and the power dissipation
due to switching activity on the interconnection buses and
along the memory hierarchy.

Figure 1 shows details of the flow of information exchanged
between Trimaran and EPIC-Explorer. A generic application
written in C represents the input to the Trimaran framework.
The first Trimaran component, IMPACT, performs classical

Explorer Estimator

IMPACT ELCOR Emulib

hmdes
file

cache.cfg PD_STATS

bench.exe

bench.c

Fig. 1. Interfacing between Trimaran and EPIC-Explorer.

optimization operations on the code, while the Elcor com-
ponent performs the actual scheduling of the instructions
for the specific VLIW architecture. This will depend on the
micro-architecture of the processor, which will be described
in the processor.hmdes1 file by means of a high-level
description language. Subsequently, according to the schedul-
ing performed by Elcor, an executable file is generated via
linking with the emulation library Emulib, which provides the
code needed to simulate each of the instruction scheduled by
Elcor. The end result is a file which, when executed on the
host machine, generates a file of statisticsPD STATS. These
statistics comprise for example the instruction mix, the number
of hits/misses per cache, etc. In order to include the cache
parameters among those explored, Emulib has been modified
in such a way as to consider the configuration of the hierarchy
of memories (cache size, associativity, block size, replacement
policy, write policy, etc.) described in the file cache.cfg.
The statistics thus obtained are used by the estimation models
implemented in EPIC-Explorer to assess the impact in terms of
area/power/performance of the configuration being considered.

Once this evaluation has been carried out, the Ex-
plorer component will establish the next configuration to
be evaluated, modifying the description/configuration files
processor.hmdes and cache.cfg. The way in which
this decision is made naturally depends on the exploration
algorithm being executed. As the exploration proceeds, the
configurations visited (together with the area, power and
performance values estimated) are stored in a database which,
on conclusion of the exploration, will be processed to extract
only the Pareto-optimal configurations.

B. Description of the Architecture

Figure 2 is a block diagram of the parameterized SOC plat-
form considered. It comprises a VLIW microprocessor core
and a two-level memory hierarchy. The exploration parameters
taken into consideration for each of the caches L1D, L1I and
L2U are size, associativity and block size.

1See [25] for a detailed specification of hmdes machine description lan-
guage

L2
 U

ni
fie

d
C

ac
he

Prefetch
Cache

Prefetch
Unit

Fetch
Unit

Instruction
Queue

D
ec

od
e

an
d

C
on

tr
ol

 L
og

ic L1
 D

at
a

C
ac

he
L1

 In
st

ru
ct

io
n

C
ac

he

Predicate
Registers

Branch
Registers

General
Purpose
Registers

Floating
Point

Registers

Control
Registers

Branch
Unit

Branch
Unit

Integer
Unit

Floating
Point
Unit

Load/
Store
Unit

Fig. 2. Reference architecture based on VLIW core.

The processor parameters visible at the architectural level,
which are therefore the ones that will be explored, can be
classified in two main categories:
� The size of the register files, in terms of the number of

registers contained in each of them.� The number of functional units for each type of unit
supported.

As far as the former are concerned, five different types of
register file can be identified:
� GPR: 32-bit registers for integers with or without sign.� FPR: 64-bit registers for floating point values (with single

and double precision).� PR: 1-bit registers used to store the Boolean values of
instructions using predication.� BTR: 64-bit registers containing information about pos-
sible future branches.� CR: 32-bit control registers containing information about
the internal state of the processor, for example the pro-
gram counter.

The functional units involved are:
� Integer Units: execution of integer operations.� Float Units: execution of floating point operations.� Memory Units: associated with load/store operations.� Branch Units: associated with branch operations.

Table I gives the set of values each system parameter can
take. There are a total of 18 parameters, 9 relating to the
memory hierarchy and 9 to the processor, giving a total of��� �����	��
���

possible combinations. It should be pointed out,
however, that not all the combinations can be mapped in a
configuration of the system (unfeasible configurations). For
example, a configuration in which the first-level cache has less
capacity than the second-level cache is considered unfeasible
and will not be part of the space of possible configurations.
At any rate, the space of feasible configurations still remains
impossible to explore exhaustively.

A fixed parameter of the reference architecture is ��� , that is
the number of slots in the instruction bundle, which has been
fixed to a max of 6 operations per instruction. Other fixed
parameters of the considered architecture are the number of

TABLE I

PARAMETER SPACE.

Parameter Parameter space

GPR 16,24,32,40,48,56,64
FPR 8,16,24,32,40,48,56,64

PR 8,16,24,32,40,48,56,64,128,256
CR 8,16,24,32,40,48,56,64

BTR 8,12,16
integer units 1,2,3,4,5,6

float units 1,2,3,4
memory units 1,2,3

branch units 1,2,3
L1D size 128,256,512,1024,2048,4096,8192

16384,32768,65536,131072
L1D block 8,16,32,64
L1D assoc 1,2,4,8,16

L1I size 128,256,512,1024,2048,4096,8192
16384,32768,65536,131072

L1I block 8,16,32,64
L1I assoc 1,2,4,8,16
L2U size 8192,16384,32768,65536,131072

262144,524288
L2U block 8,16,32,64,128
L2U assoc 1,2,4,8,16

read and write ports for the register files, which have been
assumed respectively equal to ����� � and � � .

IV. POWER ESTIMATION MODELS

In this section we will present the power consumption esti-
mation models used in the platform described in Section III.

For the case study reported here we assumed ��������� � ���
and a clock rate of 500 MHz, which is appropriate since
measurements [10] for critical path of

����� �!
caches showed

a cycle time always " � �$# . Note that parameters of the
various models adopted here have been properly scaled to refer
uniformly to the

����� �!
technology size.

A. Processor

To estimate the power consumed by the processor it was
decided to use an adaptation of the Cai-Lim model [26] to
the VLIW processor. As shown in [27] the model possesses a
discrete degree of accuracy and it is designed to demonstrate
relative power savings between designs.

The model subdivides the architecture into a set of func-
tional blocks called FBUs (Functional Block Units), associated
with various elements of the architecture.

1) Adaptation for Functional Units: The FBUs considered
for the architecture being investigated comprise instruction
decoding, the integer, floating point,memory and branch func-
tional units. Each of these FBUs is considered to be made
up of four different types of circuit: static, dynamic, clock and
SRAM. The model, the parameters of which were characterised
using SPICE on a

�� ��% �! technology, gives two measures for
each type of circuit:
� Active Power Density: average power consumption per

area unit when active.� Inactive Power Density: average power consumption per
area unit when inactive. This quantity is mainly due to

static power consumption (usually set to 10% of the active
power density).

So, the power contribution for a particular FBU can be
computed considering the relative area occupation of each type
of circuit mentioned above and the activity/inactivity cycles of
the FBU.

Indicating the clock period with � , the energy consumption
of a generic FBU can be estimated as:������� � �
	��� ��� � ������� ��� ��������� � � � ���"!#� ��� �����$�%!�& � �
where � indicates the type of circuit referred to and

� � � ���
(
��!'� ���) and

�(�����
(
���$�%!

) respectively are the active (inactive)
power density and the total number of clock cycles during
which the FBU is active (inactive). (The cycles of activity and
inactivity are obtained from the execution statistics). The total
amount of power dissipated will therefore be the sum of the
energy contributions made by the various FBUs divided by the
total exection time, that is:� �*)�+-,#�/.�+ � �103240 �/5�*6����37 # � �

2) Adaptation for Register Files: The model adaptation
for register files is slightly different from the one presented
for functional units. The reason is simple: the exploration
parameters associated with register files modify their sizes, so
we cannot consider a priori a fixed area � ! for each of the 4
circuit types seen above. Based on their SPICE simulations for
SRAMs with different sizes, Liao et al. proposed a model [28]
to estimate the static and dynamic power consumption of a
register file. In particular, they obtained equations that take
into account:
� word size: number of bit for each register in the register

file.� words: number of registers in a specific instance of the
register file.

As shown in the previous section, each of these two quan-
tities are available from architectural model: the first stricly
depends on the type of register file considered, the second is
directly associated to the relative register file size exploration
parameter. Once static and dynamic power consumpion have
been computed, we can obtain active (

�8�
) and inactive (

��!
)

power, because, by definition we have:��� � � �/9 � �*:;!=<��>�@? 0 � 0 !A<�"!�BC�@? 0 � 0 !A<
So for each register file we can compute the energy dissipation
as usual: � ,/D � �3���$� � ��� � �E����� ! �F� ! � � �
where � is the clock period lenght. Then, to get average power
consumption we can simply divide the sum of all energy
contributions by the total execution lenght G-HIG-J � �*6����37 # � � .

B. Memory Hierarchy and Buses

The contribution to power consumption made by the mem-
ory hierarchy was estimated using the analytical model pre-
sented in [29] based on the characterisation performed by
Wilton and Jouppi in [10]. The total amount of power dissi-
pated by a cache is expressed as the sum of four contributions:� <K��<KLI+ � �@M ! 0 5N! � +-? �>��O 2 , � 5N! � +-? �E� 2'PQ0 � PQ0 �E� �*! � � PQ0
where:
� � M ! 0 5R! � +4? is the power dissipated on account of transitions

in the single cell due to pre-loading for eventual access,
reading and writing.� � O 2 , � 5N! � +-? is the power dissipated on account of the
selection by the drivers of the wordlines for reading and
writing operations.� � 2'PS0 � PQ0 is the power dissipated following transitions of
the external interconnection lines driven by the cache.
It takes into consideration transitions in the address and
data lines connecting the cache to the lower and upper
levels.� � �*! � � PQ0 is the power associated with transitions in the
address lines at the cache decoder input.

A fundamental aspect of the model being considered is that
it is based on estimation of the number of transitions for the
various circuit elements involved in the activity of the cache.
These transitions are estimated using the dynamic statistics
and the equations described in [29].

The contribution towards power consumption made by the
interconnection system was calculated by counting the number
of transitions on the bus lines and applying the following
formula: �@M P ? � �

� �UT���(V@WYX 5
where � ��� is the supply voltage, V is the switching activity
(i.e. the ratio between the total number of transitions on the
bus and the number of patterns transmitted), W is the clock
frequency and X 5 is the capacity of a bus line (assuming that
all the lines have the same capacity).

V. AREA ESTIMATION MODELS

In this section we will present the area estimation models
for the parts making up the platform described in Section III.

A. Processor

The area occupied by the processor with varying architec-
tural and micro-architectural parameters was estimated using
the analytical model proposed by Miyaoka et al. in [30]. The
area is estimated as the sum of a kernel and other hardware
units. By minimum kernel we mean the nucleus of the pro-
cessor that implements the generic, essential functions, for
example the pipeline stages (fetch, decode, execution memory
access, write back), a bus for the instructions memory, a bus
for the data memory, an ALU unit, a shifter, etc. For varying
numbers of instructions that can be executed simultaneously,
expressed by the parallelism factor � � , this minimum generic
kernel was mapped in the Miyaoka model and synthesized.

Indicating with
������ � � � the area of this minimum kernel for

various parallelism factors, it is necessary to add the contribu-
tions made by the other components of the processor. These
additional contributions can be classified as follows:
� ���� : increase due to the number of possible instructions

and the number of bits per instruction.� � T � : increase due memory interfacing buses� � � : increase due to the presence of register files� � 	 � : increase due to the presence of functional units
���

.

The total area of the kernel can thus be expressed as:� � � � � � � � � � � � �� ��� ! � ? 0	��
 � � � T � � � � � � � � � 2 � , � � �L P��� � � 	 � � ��� �
Where

��! � ? 0 is the number of bit per instruction (fixed to 32)
and

is the number of instructions (fixed to 60). It should

be pointed out that these are not the area contributions made
by the additional components but represent the increase in the
minimum kernel area that management of these components
involves.

To the minimum kernel area we have to add the additional
contributions due to the area occupied by the register files (

� ,/D
)

and the hardware units (
� � �

). As regards the former, if
� ,

is
the size expressed in bits and � , the number of registers, the
area of a given register file will be indicated by the expression� , ��� , � � , � � �%� . The total contribution made by the register files
is therefore: � ,/D � ����� ! � � ,�� ��� ,�� � � ,�� � � ���
where ��� � is the number of register files present (in our case
study ��� � � %).

For the hardware units (e.g. adders, comparators, shifters,
etc.) reference will be made to a library of modules already
synthesised, optimised and characterised as regards area. So
if
� L P �

indicates the area occupied by the hardware unit
��� !

,
the area occupied by � � �

will be:� L P � ������ ! � ��� !
In short, the area of the processor will be estimated by

summing the contributions made by the kernel, the register
files and the hardware units:

� � � � � �>� ,#D �E� L P
B. Memory Hierarchy and Buses

To estimate the area occupied by the caches we used the
model described in [10]. CACTI tool presents a well tested
implementation of this model, so it was it sufficient to interface
EPIC-Explorer to CACTI estimation functions to get an area
occupation value for each of the three caches.

VI. USING THE PLATFORM

In this section we will use the platform described previously
to study the area/performance/power trade-off surfaces. As
stated more than once, it is computationally unfeasible to

evaluate each single configuration of the platform, so the
configuration space was explored using the approach proposed
by Givargis et al. in [31]. The parameter dependency graph
for our platform is shown in Figure 3.

Fig. 3. Dependency graph of the reference architecture.

Given the high level of complexity of the architecture (due
to the density of the clusters and the high degree of correlation
between them), it is not practical to apply the method in its
original for. The algorithm was therefore modified so as to
speed up the exploration, at the expense of less accuracy in
the solutions obtained. The modification consists of taking
into account only the interdependence between parameters
belonging to the same cluster, and not of that between clusters.
More specifically, with reference to the dependency graph in
Figure 3 this is equivalent to eliminating the one-way arrows
connecting clusters c3 and c4 to c1 and c2, and all those going
from c4 to clusters c5-c9.

Figure 4 shows the power/execution cycle trade-offs for two
applications from the Motorola Powerstone suite [32], which
contains a collection of embedded and portable applications,
including paging, automobile control, signal processing, imag-
ing and fax applications. The first fir is an integer FIR filter
code from a text book, while the second, jpeg, is a JPEG 24-
bit image decompression standard. Discontinuities in the trade-
off for the fir application occurred when the size, line or set-
associativity of the caches crossed its working set. Figure 5
shows the area/execution cycle/power trade-off for the jpeg
application.

Table II summarizes the results obtained. The first column
gives the benchmark used: the first two rows refer to ex-
ploration in order to optimize power and execution cycles
(jpeg (2D), fir 2D), whereas the last one ((jpeg (3D))
refers to exploration aiming at optimizing area, execution
cycles and power. The second column gives the number of
configurations visited (i.e. the number of simulations carried
out) to complete the exploration. The third column gives the
time required to complete the exploration. Of course it is not

5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7
x 10

7

Power (W)

E
xe

cu
tio

n
C

yc
le

s

JPEG benchmark

0 2 4 6 8 10 12 14 16
2

3

4

5

6

7

8
x 10

5

Power (Watt)

E
xe

cu
tio

n
C

yc
le

s

FIR benchmark

Fig. 4. Trade-off power/execution cycles for the jpeg and fir application.

0.5

1

1.5

2

2.5

5
10

15
20

25
30

35
40

0

1

2

3

4

5

6

x 10
7

Execution Cycles

Power (Watt)

 Area (cm2)

Fig. 5. Trade-off area/power/execution cycles for the jpeg application.

directly proportional to the number of configurations visited, as
not all simulations require re-compilation of the benchmark.
If, for example, the configuration of the processor remains
unchanged, it is not necessary to repeat compilation of the
benchmark but only the phase referring to its execution. The
fourth column gives the number of Pareto-optimal config-
urations obtained. Finally, the remaining columns give the
maximum difference in the area, power and execution cycle
trade-offs. As can be seen in the last column, in the case of
execution cycles the values differ considerably between the
two benchmarks considered. This is essentially due to the
lower degree of computational complexity in fir. It was, in
fact observed that with this benchmark an increase in the size
of the caches beyond 1KB did not lead to any substantial
variation in the execution cycles.

VII. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper we have presented EPIC-Explorer, a framework
for the simulation of a parameterized SOC platform based
on a VLIW processor. The platform, which can be freely
downloadable from the Internet [33], allows the designer

to evaluate any application written in C and compiled for
any instance of the platform in terms of area, dissipated
power and clock cycles. The main use the platform has been
designed for is to provide a powerful, flexible simulation and
estimation framework that can be used to develop design space
exploration algorithms. The high degree of parameterization
of the platform generates an enormous configuration space,
exhaustive exploration of which would be computationally
unfeasible, and so it is an excellent testbed for comparison
between different design space exploration algorithms. The
aim of the paper was to present the platform as a simulation
framework. Future developments will address the integration
in EPIC-Explorer of the various design space exploration
algorithms proposed in the literature and the implementation
of new ones. At the same time the platform will be extended by
adding a hierarchic interconnection system and parameterized
peripheral IPs

REFERENCES

[1] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduc-
tion to Chip and System Design. Kluwer Academic Publishers, 1991.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd,
Surviving the SOC Revolution A Guide to Platform-Based Design.
Kluwer Academic Publishers, 1999.

[3] K. Keutzer, S. Malik, R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: Orthogonalization of concerns and
platform-based design,” IEEE Transactions on Computer Aided Design
of Integrated Circuits and Systems, vol. 19, no. 12, pp. 1523–1543, Dec.
2000.

[4] J. Xu and W. Wolf, “Platform-based design and the first generation
dilemma,” in Ninth IEEE/DATC Electronic Design Processes Workshop,
Apr. 2002.

[5] G. Martin and J.-Y. Brunel, “Platform-based co-design and co-
development: Experience, methodology and trends,” in Ninth
IEEE/DATC Electronic Design Processes Workshop, Apr. 2002.

[6] F. Vahid and T. Givargis, “Platform tuning for embedded systems
design,” IEEE Computer, vol. 34, no. 3, pp. 112–114, Mar. 2001.

[7] F. Vahid, “Making the best of those extra transistors,” IEEE Design &
Test of Computers, vol. 20, no. 1, p. 96, 2003.

[8] K. Kiefendorff, “Transistor budgets go ballistic,” Microprocessor Report,
vol. 12, no. 10, pp. 14–18, Aug. 3 1998.

[9] “International thechnology roadmap for semiconductors,” Semiconduc-
tor Industry Association, 1999.

TABLE II

RIASSUNTIVE TABLE.

Benchmark Visited Elapsed Pareto Area Power Cycles
configurations time configurations tradeoff tradeoff tradeff

jpeg (2D) 23514 6.5 days 2492 - 5x 68x
fir (2D) 7357 1 day 994 - 15x 3x
jpeg (3D) 55907 4 days 4991 4x 4x 61x

[10] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An integrated cache
timing, power, and area model,” COMPAQ Western Research Lab, Palo
Alto, California 94301 USA, Tech. Rep., 1999.

[11] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: A first step toward software power minimization,” IEEE
Transactions on Very Large Scale Integration, vol. 2, no. 4, 1994.

[12] W. Fornaciari, D. Sciuto, and C. Silvano, “Power estimation of system-
level buses for microprocessor-based architectures: A case study,” in
ICCD, Austin, Texas, Oct. 1999.

[13] M. Nemani and F. N. Najm, “High-level area and power estimation
for VLSI circuits,” IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol. 18, no. 6, pp. 697–713, June 1997.

[14] A. Srinivasan, G. D. Huber, and D. P. LaPotin, “Accurate area and delay
estimation from RTL descriptions,” IEEE Transactions on Very Large
Scale Integration, vol. 6, no. 1, pp. 168–172, 1998.

[15] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for
computer system modeling,” IEEE Computer, vol. 35, no. 2, pp. 59–67,
Feb. 2002.

[16] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in International
Symposium on Computer Architecture (ISCA), 2000, pp. 83–94.

[17] W. Ye, N. Vijaykrishnan, M. T. Kandemir, and M. J. Irwin, “The design
and use of SimplePower: A cycle-accurate energy estimation tool,” in
Design Automation Conference, 2000, pp. 340–345.

[18] M. D. Hill, J. R. Larus, A. R. Lebeck, M. Talluri, and D. A. Wood,
“Wisconsin architectural research tool set,” Computer Architecture News,
Aug. 1993.

[19] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hllberg,
J. Hgberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” IEEE Computer, pp. 50–58, Feb. 2002.

[20] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod, “Using the simos
machine simulator to study complex computer systems,” ACM TOMACS
Special Issue on Computer Simulation, 1997.

[21] L. Schaelicke and M. Parker, “Ml-rsim reference manual,” Department
of Computer Science and Engineering, University of Notre Dame, Tech.
Rep., 2002.

[22] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve, “Rsim:
Simulating shared-memory multiprocessors with ilp processors,” IEEE
Computer, vol. 35, no. 2, pp. 40–49, Feb. 2002.

[23] T. Givargis and F. Vahid, “Platune: A tuning framework for system-
on-a-cip platforms,” IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol. 21, no. 11, Nov. 2002.

[24] “An infrastructure for research in instruction-level parallelism,” http://
www.trimaran.org/.

[25] J. Gyllenhaal, “A machine description language for compilation,” Mas-
ter’s thesis, Department of Electrical and Computer Engineering, Uni-
versity of Illinois, Urbana IL, Sept. 1994.

[26] G. Cai and C. H. Lim, “Architectural level power/performance optimiza-
tion and dynamic power estimation,” in Cool Chips Tutorial colocated
with MICRO32, Nov. 1999.

[27] S. Ghiasi and D. Grunwald, “A comparison of two architectural power
models,” Lecture Notes in Computer Science, vol. 2008, 2001.

[28] W. Liao, J. Basile, and L. He, “Leakage power modeling and reduc-
tion with data retention,” in IEEE/ACM International Conference on
Computer-Aided Design, Nov. 2002.

[29] M. B. Kamble and K. Ghose, “Analytical energy dissipation models for
low power caches,” in IEEE International Symposium on Low Power
Electronics and Design, Aug. 1997.

[30] Y. Miyaoka, Y. Kataoka, N. Togawa, M. Yanagisawa, and T. Ohtsuki,
“Area/delay estimation for digital signal processor cores,” in Asia and
South Pacific Design Automation Conference, 2001, pp. 156–161.

[31] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for
pareto-optimal configurations in parameterized systems-on-a-chip,” in
International Conference on Computer Aided Design, Nov. 2001.

[32] J. Scott, L. H. Lee, J. Arends, and B. Moyer, “Designing the low-power
M*CORE architecture,” in Power Driven Microarchitecture Workshop
at ISCA98, Barcelona, Spain, June 1998.

[33] D. Patti and M. Palesi, “Epic-explorer,” http://epic-explorer.sourceforge.
net/, July 2003.

