
Multi-objective Optimization of a Parameterized VLIW Architecture

Giuseppe Ascia Vincenzo Catania Maurizio Palesi Davide Patti
University of Catania, Italy

Dipartimento di Ingeneria Informatica e delle Telecomunicazioni (DIIT)
Viale Andrea Doria 6, 95125 Catania, Italy

{gascia,vcatania,mpalesi,dpatti}@diit.unict.it

Abstract

The use of Application Specific Instruction-set Proces-
sors (ASIP) in embedded systems is a solution to the prob-
lem of increasing complexity in the functions these systems
have to implement. Architectures based on Very Long In-
struction Word (VLIW), in particular, have found fertile
ground in multimedia electronic appliances thanks to their
ability to exploit high degrees of Instruction Level Paral-
lelism (ILP) with a reasonable trade-off in complexity and
silicon costs. In this case ASIP specialization may require
not only manipulation of the instruction-set but also tun-
ing of the architectural parameters of the processor and the
memory subsystem . Setting the parameters so as to op-
timize certain metrics requires the use of efficient Design
Space Exploration (DSE) strategies, simulation tools and
accurate estimation models operating at a high level of ab-
straction. In this paper we present a framework for evalua-
tion, in terms of performance, cost and power consumption,
of a system based on a parameterized VLIW microprocessor
together with the memory hierarchy. Further, the framework
implements a number of multi-objective DSE strategies to
obtain Pareto-optimal configurations for the system.

1. Introduction

The embedded systems market is without doubt the
largest and most significant application area for micropro-
cessors. There are basically two reasons for its success: the
first is the shorter lifecycle for products based on embedded
systems, which has led to increased competition between
manufacturers, the second is the constant increase in the
number, complexity and heterogeneous nature of the func-
tions these products have to offer.

The reduction in the time-to-market has also made it un-
feasible to design a processor from scratch for a specific
application. On the other hand, the design of an embed-

Compiler

Simulator

Architecture
description

Benchmark
application

Performance
numbers

Figure 1. The Y-chart approach.

ded system is application-specific and so the use of general-
purpose microprocessors is often not only inappropriate but
also unfeasible in terms of performance, cost, power, etc..

It is widely accepted nowadays that the use of Applica-
tion Specific Instruction-set Processors (ASIP) in embed-
ded systems provides much more flexible solutions than
an approach based on ASICs and is much more efficient
than using standard processors in terms of both performance
and power consumption [10]. With ASIPs, also known as
soft cores, it is possible to modify some of the hardware
parameters of the processor to generate a customized in-
stance for a specific application domain. To guarantee high
performance levels, an ASIP has to exploit the instruction
level parallelism (ILP) Architectures based on Very Long
Instruction Word (VLIW) processor, in particular, are cur-
rently seen as answering the demand for modern, increas-
ingly complex embedded multimedia applications, given
their capacity to exploit high levels of ILP while main-
taining a reasonable trade-off between hardware complexity
and cost [14].

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



1.1. Our Contribution

Figure 1 shows the Y-chart proposed by Kienhuis [11]
as a general scheme that captures the essence of any DSE
approach. The backbone of the scheme consists of a retar-
getable compiler and simulator. The input to the compiler
is both an architecture description, and a number of bench-
mark applications. The output at the simulator is numbers
that reflect system performance. Note that system perfor-
mance depends on the quality of all the above-mentioned
components. The scheme provides for three possible iter-
ations that act to optimize the code, the compiler and the
architecture respectively. In this paper we will focus on the
third cycle, which involves optimization of the architectural
parameters of a VLIW processor, together with the memory
subsystem, with a view to optimizing area, performance and
power consumption for a specific application. This requires
two tools:

• An environment to measure the variables to be opti-
mized following any variation in the architecture being
examined, in this case the use of retargetable tool gen-
eration. Retargetable techniques make it possible to
automatically generate compilers and simulators that
are aware of customizations and can thus generate or
simulate a code that is aware of any customizations.

• A DSE strategy. Compiling and executing the tar-
get application on all possible ASIP configurations is
time-consuming and more often than not computation-
ally feasible, for two main reasons. The first is that the
number of configurations is exponential in the num-
ber of parameter values. The second concerns the time
required to evaluate single configurations, which in-
cludes compilation of the application for each specific
configuration and simulation of the application with
potentially large data sets.

The contribution we intend to make with this paper cov-
ers both these points. We propose a framework (freely
downloadable from the Internet [16]) which combines a
retargetable ILP compiler and simulators and exploits the
state of the art in estimation models with a high level of ab-
straction, making it possible to evaluate, in terms of area,
performance and power consumption, any configuration of
a system comprising a parameterized VLIW architecture
and a parameterized 2-level memory hierarchy. Using the
framework we conduct an extensive exploration of the low-
power/high-performance/low-cost design space for a set of
typical media and communication applications.

2. A Parameterized VLIW-based Platform

To evaluate and compare the performance indexes of dif-
ferent architectures for a specific application, one needs to

simulate the architecture running the code of the applica-
tion. When the architecture is based on a VLIW processor
this is impossible without a compiler. In addition, to make
architectural exploration possible both the compiler and the
simulator have to be retargetable. Trimaran [1] provides
these tools and thus represents the pillar around which we
have constructed EPIC-Explorer [3]. EPIC-Explorer is a
framework that not only allows us to evaluate any instance
of a platform in terms of area, performance and power, ex-
ploiting the state of the art in estimation approaches at a
high level of abstraction, but also implements various tech-
niques for exploration of the design space.

The Trimaran system is based on the HPL-PD architec-
ture which is a parametric processor architecture designed
for research in instruction-level parallelism. The HPL-PD
opcode repertoire, at its core, is similar to that of a RISC-
like load/store architecture, with standard integer, floating
point (including fused multiply-add type operations) and
memory operations. The reference architecture is shown
in Figure 2. It comprises a VLIW microprocessor core and
a two-level memory hierarchy.

L2
 U

ni
fie

d 
C

ac
he

Prefetch
Cache

Prefetch
Unit

Fetch
Unit

Instruction
Queue

D
ec

od
e 

an
d

C
on

tr
ol

 L
og

ic L1
 D

at
a

C
ac

he
L1

 In
st

ru
ct

io
n

C
ac

he

Predicate
Registers

Branch
Registers

General
Purpose
Registers

Floating
Point

Registers

Control
Registers

Branch
Unit

Branch
Unit

Integer
Unit

Floating
Point
Unit

Load/
Store
Unit

Figure 2. Reference architecture based on
VLIW core.

The tunable parameters of the architecture can be classi-
fied in three main categories: registers file, functional units
and memory sub-system. Each of these parameters can be
assigned a value from a finite set of values. A complete
assignment of values to all the parameters is a configura-
tion. A complete collection of all possible configurations is
the configuration space, (also known as the design space).
A configuration of the system generates an instance that is
simulated and evaluated for a specific application according
to the scheme in Figure 3.

The application written in C is first compiled. Trimaran
uses the IMPACT compiler system as its front-end. This
front-end performs ANSI C parsing, code profiling, classi-
cal code optimizations and block formation. The code pro-

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



Applicat ion
C IMPACT Elcor

Processor

Memory

Configuration

HM DES Simulator

Cache
simulator

Statist ics

Estimator

Area
Execu tion

tim e PowerExplorator

Figure 3. Evaluation flow.

duced, together with the High Level Machine Description
Facility (HMDES) machine specification, represents the El-
cor input. The HMDES is the machine description language
used in Trimaran. This language describes a processor ar-
chitecture from the compiler’s point of view. Elcor is Tri-
maran’s back-end for the HPL-PD architecture and is pa-
rameterized by the machine description facility to a large
extent. It performs three tasks: code selection and schedul-
ing, register allocation, and machine dependent code opti-
mizations. The Trimaran framework also consists of a sim-
ulator which is used to generate various statistics such as
compute cycles, total number of operations, etc. In order to
consider the impact of the memory hierarchy, a cache sim-
ulator has been added to the platform.

Together with the configuration of the system, the statis-
tics produced by simulation contain all the information
needed to apply the area, performance and power consump-
tion estimation models. The results obtained by these mod-
els are the input for the exploration block. This block im-
plements an optimization algorithm, the aim of which is to
modify the parameters of the configuration so as to min-
imize the three cost functions (area, execution time and
power dissipation).

2.1. Power estimation

The amount of power consumed by the processor was
estimated using an adaptation of the Cai-Lim model [5] to
the VLIW processor. As shown in [7] the model possesses
a discrete degree of accuracy and it is designed to demon-
strate relative power savings between designs. The model
subdivides the architecture into a set of functional blocks
called FBUs (Functional Block Units), associated with var-
ious elements of the architecture (instruction decoding, the
integer, floating point, memory and branch functional units
etc.). Each of these FBUs is considered to be made up of

four different types of circuit: static, dynamic, clock and
SRAM. The model, the parameters of which were charac-
terised using SPICE on a 0.25µm technology, gives two
measures for each type of circuit:

• Active Power Density: average power consumption per
area unit when active.

• Inactive Power Density: average power consumption
per area unit when inactive. This quantity is mainly
due to static power consumption (usually set to 10%
of the active power density).

So, the power contribution for a particular FBU can be com-
puted considering the relative area occupation of each type
of circuit mentioned above and the activity/inactivity cycles
of the FBU. (The cycles of activity and inactivity are ob-
tained from the execution statistics).

The contribution to power consumption made by the
memory hierarchy was estimated using the analytical model
presented in [9] based on the characterisation performed by
Wilton and Jouppi in [17]. Analytical model have been
used successfully by several researchers to study the power
tradeoffs of different cache/memory configurations. These
model attempt to capture analitically the energy consumed
by the memory address decoder(s), the memory core, the
read/write circuitry, sense amplifies, and cache match sup-
port hardware (e.g., tag match logic). A fundamental aspect
of the model being considered is that it is based on esti-
mation of the number of transitions for the various circuit
elements involved in the activity of the cache. These tran-
sitions are estimated using the dynamic statistics from the
simulations and the equations described in [9].

The energy consumption of the buses depends on the
switching activity on the bus lines and the interconnect
capacitance of the bus lines (with off-chip buses having
much larger capacitive loads than on-chip buses). The con-
tribution towards power consumption made by the inter-
connection system was calculated by counting the number
of transitions on the bus lines and applying the formula
Pbus = 1/2V 2

ddαfCl where Vdd is the supply voltage, α
is the switching activity (i.e. the ratio between the total
number of transitions on the bus and the number of patterns
transmitted), f is the clock frequency and Cl is the capacity
of a bus line (assuming that all the lines have the same ca-
pacity). As technology scales into the deep submicron, chip
sizes grow, and multiprocessor chip architectures become
the norm, system level interconnect structures will account
for a larger and larger portion of the chip energy and delay.
In this paper we include the energy consumed in the off-
chip buses with the main memory energy consumption and
the on-chip buses with the cache energy consumption.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



2.2. Area estimation

The area occupied by the processor with varying archi-
tectural and micro-architectural parameters was estimated
using the analytical model proposed by Miyaoka et al.
in [13]. The area is estimated as the sum of a kernel and
other hardware units. By minimum kernel we mean the nu-
cleus of the processor that implements the generic, essen-
tial functions, for example the pipeline stages (fetch, de-
code, execution memory access, write back), a bus for the
instructions memory, a bus for the data memory, an ALU
unit, a shifter, etc. For varying numbers of instructions that
can be executed simultaneously this minimum generic ker-
nel was mapped in the Miyaoka model and synthesized. To
the area of this minimal kernel it is necessary to add the
contributions made by the other components of the proces-
sor. These take account of the increase due to the number of
possible instructions and the number of bits per instruction,
the register files and the functional units. To estimate the
area occupied by the caches we used the model described
in [17].

2.3. Execution Time

The performance statistics produced by the simulator are
expressed in clock cycles. To evaluate the execution time
it is sufficient to multiply the number of clock cycles by
the clock period. This was set to 10% longer than the
time required for access to the level 1 cache. Of course
when the cache configuration varies, the clock period will
also vary. Memory subsystem configurations that guaran-
tee fewer misses (because, for example, they adopt larger
caches or caches with a higher degree of associativity) and
thus an improvement in the number of clock cycles, may
therefore lead to worse overall performance due to a longer
clock period.

3. Design Space Exploration

With EPIC-Explorer it is possible to evaluate, in terms
of area, power and execution time, any application written
in C executed on any configuration of the system described
in the previous section. The problem is therefore finding
system configurations that will optimize these indexes for a
specific application. But how many possible system config-
urations are there? That is, how large is the design space
to be explored? Table 1 gives the set of values each sys-
tem parameter can take. There are a total of 18 parameters,
9 relating to the memory hierarchy and 9 to the processor,
giving a total of 1.47 × 1013 possible combinations.

Of course, in real cases a lot of the design space will
be blocked off due to high-level decisions and not all the

Parameter Parameter space

GPR 16,24,32,40,48,56,64
FPR 8,16,24,32,40,48,56,64
PR 8,16,24,32,40,48,56,64,128,256
CR 8,16,24,32,40,48,56,64
BTR 8,12,16
Integer Units 1,2,3,4,5,6
Float Units 1,2,3,4
Memory Units 1,2,3
Branch Units 1,2,3
L1D/I cache size 128B,256B,512B,...,128KB
L1D/I cache block size 8B,16B,32B,64B
L1D/I cache associativity 1,2,4,8,16
L2U cache size 8KB,16KB,32KB,...,512KB
L2U cache block size 8B,16B,32B,64B,128B
L2U cache associativity 1,2,4,8,16

Space size 1.47 × 1013

Table 1. Space of variation of the parameters.

combinations can be mapped in a configuration of the sys-
tem (unfeasible configurations). For example, a configura-
tion in which the first-level cache has less capacity than the
second-level cache is considered unfeasible and will not be
part of the space of possible configurations. At any rate,
the space of feasible configurations still remains impossible
to explore exhaustively. EPIC-Explorer implements vari-
ous multi-criteria exploration algorithms which provide an
approximation of the Pareto-optimal set. The current dis-
tribution implements four exploration techniques. The first
is the one proposed by Givargis et al. in [8] and consists
of clustering dependent parameters and then carrying out
an exhaustive exploration within these clusters. The second
technique, proposed by Ascia et al. in [2], uses genetic al-
gorithms as optimization tools. The third, proposed by For-
naciari et al. in [6] uses sensitivity analysis to reduce the
space of exploration from the product of the cardinalities
of the sets of variation of the parameters to their sum. Fi-
nally, the fourth technique, proposed by Palesi et al. in [15],
globally uses a parameter dependency model to extensively
prune non-optimal sub-spaces. Locally, the approach ap-
plies genetic algorithms to discover Pareto-optimal config-
urations within the remaining design points.

4. Impact of the Parameters

4.1. Impact of the Functional Units on Parallelism

Given the principle on which an architecture based on a
VLIW processor works, the number and type of functional
units affects the way in which the compiler can schedule the
operations in each long instruction. The presence of several
instance of a certain functional unit, for example, makes it

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



possible to schedule several operations using the unit at the
same.

To give a practical example of this effect, we will refer
to Figure 4. The class of applications being considered be-
longs to the MediaBench suite [12] and represents quite a
broad spectrum of the possibilities of using a VLIW archi-
tecture in an embedded multimedia environment. As can
be seen, a variation in the number of units for integer oper-
ations affects the average number of instructions executed
per cycle (IPC). As we are focusing on the effect of the
functional units, we are momentarily neglecting the impact
of a variation in the memory hierarchy on the actual degree
of parallelism achieved. We will therefore hypothesize that
the parameters of the memory hierarchy are fixed in such a
way as to make the number of stall cycles with respect to the
total number of cycles negligible. The effect of the memory
hierarchy will be analyzed in the following section.

g7
21

en
co

de

gs
m

−e
nc

od
e

gs
m

−d
ec

od
e

ie
ee

81
0

jp
eg

m
pe

g2
de

c

m
pe

g2
en

c

ra
w

ca
ud

io

ra
w

da
ud

io

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

IU = 1

IU = 2

IU = 3

IU = 4

IP
C

Figure 4. Instructions per cycle for different
number of integer units.

We have confined this example to a variation in the in-
teger units because this type of operation is widely used in
each of the benchmarks being investigated. This simple ex-
ample already shows that the impact on the number of op-
erations executed per cycle is not uniform in the various ap-
plications. This and other similar tests have shown that the
degree of parallelism that can be achieved strictly depends
on the application source code and has to be analyzed on a
case-by-case basis. Of course, when we search for optimal
configurations for the architecture as a whole, we will also
have to take into account variations in the number of units
of other types, and the effect of this variation, as we shall
see, will be much more complex and less predictable.

4.2. Impact of the Memory Hierarchy

The impact of a variation in the parameters of the cache
in terms of performance, area and power has been widely
documented in the literature [4]. The analysis becomes

more complex, however, when dealing with the architec-
ture being investigated here, because it involves interactions
between the parameters of the VLIW processor and those
of the memory, and these interactions are much less docu-
mented and decipherable. Let us give an example. In Fig-
ure 4 it can be seen that in some cases the number of instruc-
tions per clock cycle almost doubles if 4 integer units are
used instead of one. What is the real impact of this increase
in parallelism on execution time? The total number of cy-
cles executed by the processor can be seen as the sum of
two factors: the ideal execution cycles (i.e. those in which
there are no stalls) plus additional cycles due to stalls. It is
clear that when the number of cache misses increases, the
second term will have a greater impact. This will lead to a
reduction in the actual mean number of operations sched-
uled per clock cycle, as the processor is unable to execute
any operations during stall cycles.

Cache size Integer Units Miss Rate
1 2 3 4

∞ 1.24 1.67 1.88 2.14 0.00%
128KB 1.18 1.50 1.66 1.86 0.64%
64KB 1.16 1.46 1.60 1.78 0.97%
32KB 1.13 1.38 1.49 1.64 1.52%
16KB 1.12 1.34 1.45 1.58 2.13%
8KB 1.11 1.32 1.41 1.54 2.51%
4KB 1.05 1.14 1.19 1.24 13.20%
2KB 1.05 1.13 1.18 1.22 14.19%

Table 2. Impact of the L1 instruction cache on
the IPC.

Table 2 gives a practical example of this for the bench-
mark mpeg2decode, with a variation in the size of the
L1 instruction cache. Reading the table from the top down
it can be seen that the real case increasingly departs from
the ideal one in which a negligible number of misses was
hypothesized.

Despite this it is misleading to think that choosing sev-
eral functional units and a cache with almost zero miss fre-
quency is a way to solve the problem of designing VLIW
architectures. As seen when discussing the estimation mod-
els, in fact, each functional unit always has static power con-
sumption, even when it is not being actively used. How can
we decide a priori whether it is preferable, from a power
viewpoint, to execute fewer cycles using several units and
large caches or more cycles with fewer units and smaller
caches? In addition, we are neglecting the other cache pa-
rameters: it may be convenient to use blocks of a larger size,
or to reduce the degree of associativity so as to shorten the
critical path and thus allow for a faster clock frequency. It
should therefore be clear that in performing but complex ar-
chitectures like VLIW the interaction between the various

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



elements involved makes it difficult to make design deci-
sions exclusively on the basis of the designer’s experience
and intuition.

5. Experiments

As said previously, a key issue to be taken into consid-
eration in embedded multimedia applications is that perfor-
mance optimization is often not the only aim. In the last
few years, for example, it has become clear that minimiza-
tion of power consumption is a critical factor in evaluating
the correctness of a design decision. Maximization of per-
formance and minimization of power consumption are two
requisites that often clash with each other. There is thus no
single optimal configuration: it is necessary to identify a set
of Pareto-optimal configurations that will represent the best
trade-offs the architecture can offer. The design space con-
sidered, as seen previously, is of a totally prohibitive size,
which precludes any attempt at exhaustive evaluation of all
the possible design alternatives. It is therefore necessary to
have techniques that will permit “intelligent” exploration of
the space of possible configurations so as to obtain, in the
initial design stages, the configurations that are more likely
to meet the requirements of the system. As the number of
alternatives thus obtained is lower, the designer can then
assess them individually using more accurate tools and es-
timation models at a lower level.

To show the trade-offs that can be obtained in terms of
power consumption and execution time we will refer to the
exploration technique that uses a multi-objective genetic ap-
proach [2], which features an excellent trade-off between
efficiency and accuracy of results.

In order to further verify the validity of the technique,
tests were carried out on subspaces whose size made it pos-
sible to compare the results with those obtained by exhaus-
tive exploration. Table 3 gives the range of variation of each
parameter for two different subspaces. In the first subspace
only variations in the parameters of the first-level caches
and the number of integer units were considered. The aim
in defining the second subspace was to consider all the pa-
rameters of the processor. As a variation in a processor pa-
rameter involves recompiling the benchmark (with a conse-
quent increase in the time required to evaluate each configu-
ration), the range of values for each parameter was limited.
In this way the size of the configuration space was kept at
sufficiently low as to allow exhaustive exploration. We will
refer below to the results obtained on the mpeg2decode
benchmark. Equivalent results, in terms of both exploration
time and accuracy were obtained with the remaining bench-
marks.

Figure 5 shows the Pareto-fronts obtained by exhaustive
exploration and the genetic approach in both subspaces. To
assess the validity of the approximation obtained it must

Parameter Subspace 1 Subspace 2

GPR 64 32, 64
FPR 64 64
PR 64 32, 128
CR 64 16, 64
BTR 16 16
Integer Units 1,2 1,2,3
Float Units 1 1
Memory Units 1 1,2
Branch Units 1 1,2
L1D size 4KB,...,64KB 16KB
L1D block size 8B,16B,32,64B 16B
L1D assoc 1,2,4 1
L1I size 4KB,...,64KB 8KB,16KB,32KB
L1I block size 8B,16B,32B,64B 8B,16B,32B
L1I assoc 1,2,4 1,2
L2U size 128KB,...,512KB 128KB
L2U block size 8B,16B,32B,64B,128B 64B
L2U assoc 1,2,4,8,16 2

Space size 540,000 1,728

Table 3. Parameters and relative range of vari-
ation for each of the subspaces explored.

be borne in mind that it is more important for the genetic
approach to provide a well-distributed set of solutions with
a trade-off range almost identical to the original one than to
find all the exact optimal points.

It is more interesting to observe the results obtained in
the subspace containing all the parameters. Figures 6(a)
and 6(b) show the Pareto-front and Pareto-surface in two
cases: with two objectives (execution-time/power) and
three objectives (area/execution-time/power).

Table 4 gives the configurations corresponding to the
end points of the Pareto-surface. The three rows refer re-
spectively to the configuration which led to the least cost
(area), lowest power consumption and best performance
(execution-time). As can be observed, the fastest config-
uration uses direct mapped caches (which make it possi-
ble to work at higher clock frequencies), a greater number
of functional units (which increase the IPC) and a larger
level-2 cache (which reduces the number of main memory
accesses). The configuration that consumes less power op-
timizes the cache so as to reduce access to the higher, more
power-hungry levels in the hierarchy. It does so by increas-
ing the cache size and degree of associativity, to the detri-
ment of the maximum clock frequency and therefore per-
formance. The configuration with the lowest cost naturally
minimizes the size of the caches and the number of func-
tional units. Of course, the remaining configurations on the
Pareto-surface represent all the possible trade-offs between
the three objectives discussed.

Finally, Table 5 summarizes the results obtained in terms

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Power(W)

E
xe

cu
tio

n 
tim

e(
m

s)

Exhaustive
Genetic

10 15 20 25 30 35 40 45 50 55 60
2

4

6

8

10

12

14

16

18

Power(W)

E
xe

cu
tio

n 
tim

e(
m

s)

Exhaustive
Genetic

(a) (b)

Figure 5. Pareto-fronts obtained by exhaustive exploration and the genetic approach in both (a)
Subspace 1 and (b) Subspace 2.

Area Power Ex. Time Clock Functional units Registers files L1I/L1D/L2U cache
(cm2) (W) (msec.) (MHz) IU FPU MU BU GPR FPR PR CR S (KB) BS (B) A

0.8 13.2 16.4 1456 3 1 1 1 64 32 32 32 4/4/128 32/16/64 4/4/4
1.9 7.3 53.7 1105 3 1 1 2 32 64 64 64 32/4/128 64/64/128 4/2/16
1.4 51.6 5.6 1878 4 2 1 2 64 64 32 32 8/4/256 64/8/32 1/1/8

Table 4. Extreme configurations.

of trade-offs and exploration time. Since the architecture is
parametric as regards both the units of the VLIW processor
and the memory hierarchy, it provides a broad spectrum of
design alternatives. As can be seen, in fact, the trade-offs in
terms of area, execution-time and power are considerable.
Of even greater importance is the fact that these solutions
were obtained visiting a number of configurations that was
lower than the whole design space by a factor of about 1010.
This obviously has a great impact on the exploration time,
making exploration computationally feasible.

6. Conclusions

In this paper we have presented EPIC-Explorer, a
framework to evaluate a system comprising a parameter-
ized VLIW microprocessor and a parameterized memory
hierarchy, in terms of area, performance and power con-
sumption. Since the architecture is parametric as regards
both the units of the VLIW processor and the memory hi-
erarchy, it provides a broad spectrum of design alterna-
tives. The price of this is a difficult, if not impossible,
search for the optimal configurations based solely on em-
pirical suppositions. For this reason the framework im-
plements a number of design space exploration strategies,
each featuring a different trade-off between the computa-
tional complexity of completing the exploration and the

quality of the solutions (also known as Pareto-optimal con-
figurations) obtained. Tests carried out on a set of specific
embedded multimedia applications confirmed the flexibil-
ity of the platform. Its field of application is consider-
able. It can be used to evaluate the impact of a system’s
architectural parameters on area, power and performance, to
test new design space exploration strategies and to investi-
gate the several compilation options offered by retargetable
compilers, etc. EPIC-Explorer can be downloaded from
http://epic-explorer.sourceforge.net/.

References

[1] An infrastructure for research in instruction-level paral-
lelism. http://www.trimaran.org/.

[2] G. Ascia, V. Catania, and M. Palesi. An evolutionary ap-
proach for pareto-optimal configurations in soc platforms. In
K. A. Pulishers, editor, SOC Design Methodologies, 2002.

[3] G. Ascia, V. Catania, M. Palesi, and D. Patti. EPIC-
Explorer: A parameterized VLIW-based platform frame-
work for design space exploration. In First Workshop on
Embedded Systems for Real-Time Multimedia (ESTIMedia),
Newport Beach, California, USA, Oct. 3–4 2003.

[4] L. Benini, A. Macii, and M. Poncino. Energy-aware design
of embedded memories: A survey of technologies, architec-
tures, and optimization techniques. ACM Transactions on
Embedded Computing Systems, 2(1), Feb. 2003.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 



5 10 15 20 25 30 35 40 45 50 55
5

10

15

20

25

30

35

40

Power(W)

E
xe

cu
tio

n 
tim

e(
m

s)

0.5

1

1.5

2

2.5

3

3.5

0
10

20
30

40
50

60

0

10

20

30

40

50

60

Area(cm2)

E
xe

cu
tio

n 
tim

e(
m

s)

 Power(W)

(a) (b)

Figure 6. Exploration of the whole configuration space. (a) Trade-off power/execution-time. (b)
Trade-off area/power/execution-time.

Benchmark Visited Elapsed Pareto Area Power Execution time
configurations time configurations tradeoff tradeoff tradeoff

mpeg2decode (2D) 1137 47 hours 73 – 7x 6.8x
mpeg2decode (3D) 1037 28 hours 175 3.8x 7x 9.6x
jpeg (2D) 1012 17 hours 83 – 6x 8.2x

Table 5. Results summary.

[5] G. Cai and C. H. Lim. Architectural level
power/performance optimization and dynamic power
estimation. In Cool Chips Tutorial colocated with
MICRO32, pages 90–113, Nov. 1999.

[6] W. Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria. A
sensitivity-based design space exploration methodology for
embedded systems. Design Automation for Embedded Sys-
tems, 7:7–33, 2002.

[7] S. Ghiasi and D. Grunwald. A comparison of two archi-
tectural power models. Lecture Notes in Computer Science,
2008, 2001.

[8] T. Givargis, F. Vahid, and J. Henkel. System-level explo-
ration for Pareto-optimal configurations in parameterized
System-on-a-Chip. IEEE Transactions on Very Large Scale
Integration Systems, 10(2):416–422, Aug. 2002.

[9] M. B. Kamble and K. Ghose. Analytical energy dissipation
models for low power caches. In IEEE International Sympo-
sium on Low Power Electronics and Design, pages 143–148,
Aug. 1997.

[10] K. Keutzer, S. Malik, and A. R. Newton. From ASIC to
ASIP: The next design discontinuity. In IEEE International
Conference on Computer Design: VLSI in Computers and
Processors, pages 16–18, Sept. 2002.

[11] B. Kienhuis. Design Space Exploration of Stream-based
Dataflow Architectures. PhD thesis, Technical University
of Delft, Jan. 29 1999.

[12] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
aBench: A tool for evaluating and synthesizing multimedia

and communications systems. In International Symposium
on Microarchitecture, Dec. 1997.

[13] Y. Miyaoka, Y. Kataoka, N. Togawa, M. Yanagisawa, and
T. Ohtsuki. Area/delay estimation for digital signal proces-
sor cores. In Asia and South Pacific Design Automation Con-
ference, pages 156–161, 2001.

[14] A. Mizuno, K. Kohno, R. Ohyama, T. Tokuyoshi, H. Ue-
tani, H. Eichel, T. Miyamori, N. Matsumoto, and M. Mat-
sui. Design methodology and system for a configurable me-
dia embedded processor extensible to VLIW architecture. In
IEEE International Conference on Computer Design: VLSI
in Computers and Processors, pages 2–7, Sept. 16–18 2002.

[15] M. Palesi and T. Givargis. Multi-objective design space ex-
ploration using genetic algorithms. In Tenth International
Symposium on Hardware/Software Codesign, Stanley Hotel,
Estes Park, Colorado, USA, May 6–8 2002.

[16] D. Patti and M. Palesi. Epic-explorer. http://
epic-explorer.sourceforge.net/, July 2003.

[17] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An inte-
grated cache timing, power, and area model. Technical re-
port, COMPAQ Western Research Lab, Palo Alto, California
94301 USA, 1999.

Proceedings of the 2004 NASA/DoD Conference on Evolution Hardware (EH’04) 
0-7695-2145-2/04 $ 20.00 © 2004 IEEE 


	footer1: 


