Chapter 3
Transport Layer

A note on the use of these ppt slides:

We’ re making these slides freely available to all (faculty, students, readers).

They’ re in PowerPoint form so you see the animations; and can add, modify,

and delete slides (including this one) and slide content to suit your needs.

They obviously represent a /ot of work on our part. In return for use, we only

ask the following:

+ If you use these slides (e.g., in a class) that you mention their source
(after all, we’ d like people to use our book!)

+ If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

©AII material copyright 1996-2012
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking
A Top-Down Approach

KUROSE | ROSS

Computer
Networking: A Top
Down Approach
6t edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

Transport Layer 3-1

Chapter 3: Transport Layer

our goals:

% understand + learn about Internet
principles behind transport layer protocols:
transport layer = UDP: connectionless
services: transport

= multiplexing, = TCP: connection-oriented
demultiplexing reliable transport
= reliable data transfer = TCP congestion control

" flow control
" congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

» provide logical communication
between app processes

running on different hosts

« transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

" rcv side: reassembles
segments into messages, transport

networ

passes to app layer Gt I

% more than one transport T g e = g8
protocol available to apps v~ N

= [nternet;: TCP and UDP

Transport Layer 3-4

Transport vs. network layer

+ network layer: logical

communication
between hosts

< transport layer:
ogical
communication
between processes

= relies on, enhances,

network layer
services

- household analogy:

|2 kids in Ann s house sending
letters to |2 kids in Bill s
house:

» hosts = houses
% processes = kids

% app messages = letters in
envelopes

% transport protocol = Ann
and Bill who demux to in-
house siblings

» network-layer protocol =

postal service

Transport Layer 3-5

Internet transport-layer protocols

<+ reliable, in-order
delivery (TCP) w
" congestion control
" flow control
" connection setup

<+ unreliable, unordered
delivery: UDP

= no-frills extension of
best-effort IP

< services not available:
" delay guarantees
" bandwidth guarantees

application
< DO

net

network
data link
& physical

ST o8
data li
hysic
Py network
netw data link
data link(e, hysical
physical O
Shork .
' k
CEFID (p
q network [€%
e data link S
O
|_networkN(e®,
data link
~mtemshySical
network
physical ANSDO
e networ
data link
physical

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

Multiplexing/demultiplexing

- multiplexing at sender:
handle data from multiple

sockets, add transport header
(later used for demultiplexing)

application

application

— demultiplexing at receiver: —
use header info to deliver
received segments to correct
socket

»

transport

n

t

t

rk

network

[{rk

Y$i

ral

link
L ! physical

e —
application |:| socket

.m Q process

A

trandport

network

limk @
physical

Transport Layer 3-8

How demultiplexing works

+ host receives |IP datagrams

= each datagram has source |P
address, destination IP
address

" each datagram carries one
transport-layer segment

" each segment has source,

destination port number

% host uses IP addresses &
bort numbers to direct

segment to appropriate
socket

32 bits -

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

< recall: created socket has < recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify
= new DatagramSocket (12534); . . .
destination IP address

" destination port #

< when host receives UDP IP datagrams with same
segment: dest. port #, but different

" checks destination port # mmmp Z?’usfjrlcz apd:r:e;ienisgfs/
|n. segment will be directed to same
= directs UDP segment to socket at dest
socket with that port #

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157); application (5775);
application application
vy
L4 trasport
trangport e V\lO n
network | n'(netivork
link plh‘/sical link
q physical phykical @
It I =
source port: 6428 source port: ?
; dest port: 9157] dest port: ?
> e v
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

+» TCP socket identified % server host may support
by 4-tuple: many simultaneous TCP
" source |IP address sockets:
" source port number = each socket identified by
= dest IP address its own 4-tuple
= dest port number « web servers have

different sockets for

+ demux: receiver uses , :
each connecting client

all four values to direct

segment to appropriate " non-persistent HT TP will
socket have different socket for

each request

Transport Layer 3-12

Connection-oriented demux: example

application e ——
application application
4 angport HTR
tranpport detwlork transport
net*vork lilk network
ik hysical link
q physical ol || server: |P physical b
e address B ——
host: IP source IP,port: B,80 T host: IP
address A dest IP,port: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80

source IP,port: C,9157
dest IP,port: B,80_

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-13

Connection-oriented demux: example

threaded server

application

application

4
tranpport

net*vork

q phylsical

<4

: source IP,port: B,80
azzf-gslf A dest IP,port: A,9157

source IP,port: A,9157
dest IP, port: B,80

application
B “transport
network
link
server: IP physical v
address B S
-] host: IP
~ source IP,port: C,5775 address C
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

+ no frills,” “bare bones” + UDP use:
Internet transport = streaming multimedia
protocol apps (loss tolerant, rate
+ “best effort” service, sensitive)
UDP segments may be: = DNS
" |ost = SNMP
" delivered out-of-order + reliable transfer over
to app UDP:

< connectionless:

" no handshaking
between UDP sender,
receiver

= each UDP segment
handled independently
of others

" add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-16

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

length <~ | checksum

— why is there a UDP? —

% NO connhection

application establishment (which can
data add delay)
(payload)

<+ simple: no connection
state at sender, receiver

< small header size

% no congestion control:
UDP can blast away as
fast as desired

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors’” (e.g., flipped bits) in transmitted
segment

sender: receiver:

% treat segment contents, » compute checksum of
including header fields, received segment
as sequence of 16-bit .

+ check if computed

integers
8 checksum equals checksum

< checksum: addition

(one’ s complement field value:

sum) of segment * NO - error detected

contents " YES - no error detected.
» sender puts checksum But maybe errors

value into UDP nonetheless? More later

checksum field

Transport Layer 3-18

Internet checksum: example

example: add two | 6-bit integers
1110011 001100110
110101010101 01O01

wraparound 101110111011 1011
P >

sum

1011101110111 100
checksum 0100010001 0O0OO0O0OT11

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

Principles of reliable data transfer

% important in application, transport, link layers
" top-10 list of important networking topics!

sending receiver I
process I process
| 1

IP()relicnble c:hclhhel)j

application
layer

transport
layer

(a) provided service

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of reliable data transfer

% important in application, transport, link layers
" top-10 list of important networking topics!

sending receiver I
process I process
| 1

IP()reliclble c:hc:mnel)j

application
layer

transport
layer

Junreliable chonnel)i

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of reliable data transfer

% important in application, transport, link layers
" top-10 list of important networking topics!

senalngl receiver I
Process process
! i

. rdt send()
L()rellclble c:hcmhel)j =

application
layer

deliver data()

=

8_ 5 reliable data reliable data

@ > fransfer protfocol transfer protocol

% O (sending side) (receiving side)

- udt_send ()¢ | packet | | packet] Irdt rev()

Junreliable chc:mhel)<1A

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt send() : called from above, deliver data() : called by

(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /
\ rdt_send() data Tdeliver_data ()

send [reliable data reliable data receive
side [fransfer protoco fransfer protocol i
(sending side) (receiving side) Slde
udt send()i packet packet Irdt rcv ()
1‘-hOunreIiabIe channel)J
udt send () : called by rdt, rdt rcv () : called when packet
to transfer packet over arrives on rcv-side of channel
unreliable channel to receiver

Transport Layer 3-24

Reliable data transfer: getting started

we’ |l

% incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

<+ consider only unidirectional data transfer
= but control info will flow on both directions!

+ use finite state machines (FSM) to specify sender,

receiver
event causing state transition
actions taken on state transition

—_—

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-25

rdt|.0: reliable transfer over a reliable channel

g

+ underlying channel perfectly reliable
" no bit errors
" no loss of packets

+ separate FSMs for sender, receiver:
= sender sends data into underlying channel
" receiver reads data from underlying channel

ait for rdt send(data) rdt_rcv(packet)
call from

above

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 3-26

rdt2.0: channel with bit errors

J/

<+ underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

How do humans recover from “errors
during conversation?

Transport Layer 3-27

rdt2.0: channel with bit errors

<+ underlying channel may flip bits in packet
= checksum to detect bit errors

+ the question: how to recover from errors:
" acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

" negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

= sender retransmits pkt on receipt of NAK
% new mechanisms in rdt2.0 (beyond rdt1l. 0):

" error detection

= feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)
snkpkt = make_pkt(data, checksum)

rdt_rcv(rcvpkt) &&

iISNAK(rcvpkt)
rdt_rcv(rcvpkt) &&

udt_send(sndpkt) corrupt(rcvpkt)
udt_send(NAK)

call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

Wait for
call from

notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

ait for
call from
above

rdt rcv(rcvpkt) &&
corrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

call from
below

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

what happens if ACK/ handling duplicates:

NAK corrupted?

+ sender doesn’ t know
what happened at
receiver!

% can tjust retransmit:
possible duplicate

— stop and wait

response

sender sends one packet,
then waits for receiver

< sender retransmits

current pkt if ACK/NAK
corrupted

+ sender adds sequence

number to each pkt

» receiver discards (doesn’ t

deliver up) duplicate pkt

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iISNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

A \

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

A
Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
(corrupt(rcvpkt) ||
iSNAK(rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make pkt(ACK, chksum)
udt_send(sndpkt)

\
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

rdt2.l: discussion

sender:
% seq # added to pkt

» two seq. # s (0,1) will
suffice. Why?

<+ must check if received
ACK/NAK corrupted

< twice as many states

= state must
“remember’ whether
“expected’ pkt should
have seq # of 0 or |

receiver:

< must check if received
packet is duplicate

" state indicates whether
0 or | is expected pkt
seq #
< nhote: receiver can not
know if its last ACK/
NAK received OK at

sender

Transport Layer 3-35

rdt2.2: a NAK-free protocol

+ same functionality as rdt2.1, using ACKs only

+ instead of NAK, receiver sends ACK for last pkt
received OK

" receiver must explicitly include seq # of pkt being ACKed

+ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt _send(sndpkt)
—— — rdt_rcv(rcvpkt) &&

_ (corrupt(rcvpkt) ||
............ Watt lor iSACK(rcvpkt,1))
.. 0 udt_send(sndpkt)
.. sender FSM
... fragment rdt_rcv(rcvpkt)
... && notcorrupt(rcvpkt)
rdt_rcv(rcvpkt) && e S e
(Corrupt(rcvpkt) ” ... A
has_seq1(rcvpkt)) receiver FSM "
T——— fragment
\ — T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) Tl
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-37

rdt3.0: channels with errors and loss

new assumption:
underlying channel can

also lose packets
(data, ACKGs)

" checksum, seq. #,
ACKSs, retransmissions
will be of help ... but
not enough

approach: sender waits

“reasonable” amount of
time for ACK

< retransmits if no ACK
received in this time

< if pkt (or ACK) just delayed
(not lost):
" retransmission will be
duplicate, but seq. # s
already handles this

" receiver must specify seq
of pkt being ACKed

% requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum)

\ udt_send(sndpkt)
\ start_timer
—

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iSACK(rcvpkt,0))

A

Wait for
call Ofrom

above

(corrupt(rcvpkt) ||
iISACK(rcvpkt,1))

A

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop_timer

Wait for
call 1 from

above
/

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-39

rdt3.0 in action

sender receiver
send pkt0 ktO
\\ FCcv pkto
ac send ackO
rcv ackO /ﬁ/
send pkt1 \K
rcv pktl
ack send ackl
rcv ackl
send pkt0 \;to\‘
rcv pktO
ack send ackO
(a) no loss

sender receiver
send pkt0 ktO
\ rcv pkto
ac send ackO
sen t
p \Kx
loss
imeout _
resend pktl \K
rcv pktl
ack send ackl
rcv ackl
send pktO ktO

/

rcv pktO
ack send ackO

(b) packet loss

Transport Layer 3-40

rdt3.0 in action_

sender receiver
send pktO ktO
\ FCcv pkto
ac send ackO
rcv ackO A/Q/
send pktl_ \K
rcv pktl
ekl—" send ack1
- loss
imeout -
resend pktl =0l rov pktl
ack (Sdglt’ledCt aclcu:fillcate)
rcv ackl
send pkt0 \Ito\A
rcv pktO
ack send ackO

(c) ACK loss

sender receiver
send pktO
\\ I'cv pkto
send ackO
rcv ack0 /ﬂ/
send pktl_ \\
rcv pktl

send ackl
ack1
/meout -
resend pktl rev pkti
rcv ackl (detect du |cate)

send pktoﬁ< send ack
rcv ac 1 'cv pkto

send pkt0 send ackO
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 3-41

Performance of rdt3.0

% rdt3.0 is correct, but performance stinks
+» e.g.. | Gbps link, 15 ms prop. delay, 8000 bit packet:

_ L _ 8000bits _ :
Dians = B = 3 0° bits/sec 8 microsecs
" U . 4o Utilization — fraction of time sender busy sending
U L/R .008 — 0.00027

sender RTT +L /R - 30.008

" if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

% network protocol limits use of physical resources!

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = OJ
last packet bit transmitted, t =L/ Rz

— first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet, t=RTT+L/R

U B L/R .008
sender pTT +[/R 30.008

= 0.00027

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
* buffering at sender and/or receiver

data pqcke’r—»

data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

% two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelinin

sender

first packet bit transmitted, t = 0—
last bit transmitted, t =L /R

A

RTT

ACK arrives, send next]
packet, t=RTT+L/R |

: increased utilization

receiver

— first packet bit arrives
—last packet bit arrives, send ACK

—last bit of 2"d packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

/

0.00081

Transport Layer 3-45

Pipelined protocols: overview

Go-back-N:

<+ sender can have up to
N unacked packets in
pipeline

% receiver only sends
" cumulative ack

= doesn’ t ack packet if
there’ s a gap
<+ sender has timer for
oldest unacked packet

= when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack’ ed packets in
pipeline

< rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

" when timer expires,
retransmit only that
unacked packet

Transport Layer 3-46

Go-Back-N: sender

% k-bit seq # in pkt header
= “window” of up to N, consecutive unack’ ed pkts allowed

send _base hexfsegnum dlready Usable. hof
\L i ack’ed yet sent
{11 AR TITETTINGG = EESS
t _ window size —2
N

= ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”

* may receive duplicate ACKs (see receiver)
+ timer for oldest in-flight pkt

% timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextsegnum)
start_timer
nextseqgnum-++
A else

base=1 refuse_data(data)

nextseqnum=1

-

O..
v

* timeout
start_timer
Q udt_send(sndpkt[base])
O Q udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)
udt_send(sndpkt
rdt_rcv(rcvpkt) gglnextseqnum-1])
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop _timer
else

start timer
- Transport Layer 3-48

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rcv(rcvpkt)
- () && notcurrupt(rcvpkt)

A T~ - o && hasseqnum(rcvpkt,expectedseqnum)
= -

expectedsegnum=1 A:-Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedseqnum
% out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

" re-ACK pkt with highest in-order seq #

Transport Layer 3-49

GBN in action

sender window (N=4) sender receiver

EPE 25678 send pkt0

EPEls5678 send pktl \ _

415678 send pktz-\ receive pkt0, send ackO

15678 send pkt3 X/0ss receive pktl, send ackl
(wait)

receive pkt3, discard,

ofEE¥5678 rcv ack0, send pkt4 (re)send ackl

0 1EEE]6 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
ignore duplicate ACK

receive pkt5, discard,
. E okt 2 timeout / (re)send ackl
R 2 3 4 5[RA: send pkt2
W1 2 3 4 5[4 send pkt3 \ .
Rl 2 3 4 5[R send pkt4 rcv pkt2, deliver, send ack2
0 1EEYI6 7 8 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
/ rcv pkt5, deliver, send ack5

Transport Layer 3-50

Selective repeat

<+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received
= sender timer for each unACKed pkt

<« sender window

= N consecutive seq # s
" limits seq #s of sent, unACKed pkts

Transport Layer 3-51

Selective repeat: sender, receiver windows

send_base nexfsegnum dlready Usable. not
, ack’ed yet sent
(U0 TOTAEECTT =t e
t __ window size —24
N

(a) sender view of sequence numbers

acceptable
(buffered) but ¥ (within window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂllllllllllllﬂﬂﬂ |ogectedaer o

t _ window size—4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-52

Selective repeat

— receiver

— sender
data from above:

<+ if next available seq # in
window, send pkt

timeout(n):

+ resend pkt n, restart
timer

AC K(n) in [sendbase,sendbase+N]:

+ mark pkt n as received

< if n smallest unACKed

pkt, advance window base
to next unACKed seq #

Pkt nin [rcvbase, rcvbase+N-1]
+ send ACK(n)
+» out-of-order: buffer

<+ in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pkt nin [rcvbase-N,rcvbase-1]
« ACK(n)

otherwise:

% ighore

Transport Layer 3-53

Selective repeat in action

sender window (N=4) sender receiver
EPEl256738 send pktO
PR+ 5675 send pktl \ receive pkt0, send ack0
0 12 3PNLRA: send pkt2- . !
EPE 45678 send pkt3 T~Xloss receive pktl, send ackl
wait
- () receive pkt3, buffer,
ofEEX5678 rcv ack0, send pkt4 send ack3

0 1EE¥Is 78 rcv ackl, send pkt5 receive pktd, buffer,

send ack4

ﬁrecord ack3 arrived recejve pkt5, buffer,

. : k

pkt 2 timeout _ send ack>
WKl 2 3 4 5[&} send pkt2
0 16 7 8 record ack4 arrived .
R 2 3 4 5[RA:] . rcv pkt2; deliver pkt2,
VRl 2 3 4 5[record ack4 arrived / pkt3, pktd, pkt5; send ack2

Q: what happens when ack2 arrives?

Transport Layer 3-54

Selective repeat:

dilemma

example:

\/
0’0

\/
0’0

\/
0’0

L)

seq# s:0, 1,2, 3
window size=3
receiver sees no

difference in two
scenarios!

duplicate data
accepted as new in

(b)

: what relationship

between seq # size
and window size to
avoid problem in (b)!?

sender window
(after receipt)

receiver window
(after receipt)

EEso12 RO

0 1 2 IR, \K — ofHo 12

k012 ?‘ — 01EEI 2

— 01 2ETHI>

oo 1 2

0 1EE1 z]
pktO —— will accept packet

(a) no problem with seq number 0

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!

Bz 012 —XY
REE:0 12 K ofIEElo 1 2
0 12 KNEW: _9%4 0 1EEN]1 2
)e/ — 01 2ElKI2
timeout
retransmit pktO
13012
012] \D\ —, will accept packet
(b) oops' With seq number 0

Transport Layer 3-55

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-56

TCP: Overview Recs: 793.1122,1323, 2018, 2581

% point-to-point:
= one sender, one receiver
<+ reliable, in-order byte
steam:
" no “messag’e
boundaries
<+ pipelined:
= TCP congestion and flow
control set window size

< full duplex data:

» bi-directional data flow
in same connection

= MSS: maximum segment
size
< connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-57

TCP sesment structure

< 32 bits

URG: urgent data

(generally not used)™_ source port# | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

"\ sequence number
\Knowledgement number

PSH: push data now
(generally not used) —|

head
len _@d_EAIEESF receive window

7

bytes

Urg data pointer revr willing

RST, SYN, AN |
connection estab

to accept

op/{ s (variable length)

(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-58

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers:

=byte stream “number’ of
first byte in segment’ s
data

acknowledgements:

"seq # of next byte
expected from other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn' t say,
- up to implementor

source port #

sequence number

acknowledgement number

dest port #

rwnd

checksum

urg pointer

window size

< N

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed but not usable
(“in- yet sent
flight”)

incoming segment to sender
dest port #
sequence number

lll acknowledgement number

A rwnd

checksum

source port #

urg pointer

Transport Layer 3-59

TCP seq. numbers, ACKs

host ACKs
receipt

of echoed
‘C,

Seq=42, ACK=79, data = ‘C

/

Seq=79, ACK=43, data = ‘C’

\

Seq=43, ACK=K

simple telnet scenario

Host B

host ACKs
receipt of

‘C’, echoes
back ‘C’

Transport Layer 3-60

TCP round trip time, timeout

Q: how to set TCP
timeout value?

% longer than RTT
= but RTT varies
< too short: premature

timeout, unnecessary
retransmissions

<+ too long: slow reaction
to segment loss

Q: how to estimate RTT?

«» SampleRTT: measured
time from segment
transmission until ACK
receipt

" jgnore retransmissions

SampleRTT will vary, want
estimated RTT “smoother”

" average several recent
measurements, not just
current SampleRTT

X/
L4

Transport Layer 3-61

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

<+ exponential weighted moving average
+ influence of past sample decreases exponentially fast
<+ typical value:a =0.125

RTT (milliseconds)

350 ~

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr,

¢ sampleRTT

EstimatedRTT

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-62

TCP round trip time, timeout

+ timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

<+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-fB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-63

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-64

TCP reliable data transfer

& | CP creates rdt service
on top of IP" s unreliable

service
" pipelined segments ,
= cumulative acks let” s initially consider
= single retransmission simplified TCP sender:
timer * ignore duplicate acks
%+ retransmissions " ignore flow control,

congestion control

triggered by:
= timeout events
" duplicate acks

Transport Layer 3-65

TCP sender events:

data rcvd from app:

% Ccreate segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

% start timer if not
already running

= think of timer as for
oldest unacked
segment

= expiration interval:
TimeOutInterval

timeout;

% retransmit segment
that caused timeout

< restart timer
ack revd:

+ if ack acknowledges
previously unacked
segments

" update what is known
to be ACKed

= start timer if there are
still unacked segments

Transport Layer 3-66

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSegNum = InitialSegNum
SendBase = InitialSeqgNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-67

TCP: retransmission scenarios

I
(®)
n
~t
>

i

le—— timeout —*

\
Seq=92, 8 bytes of data

y

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Ho

e

S

/
ACK=100

Host A

g

<4

SendBase=92 ~—

/
/

le—— timeout ——

SendBase=100
SendBase=120

SendBase=120

Seq=92, 8 bytes of data
Seq=100, 20 bytes of dat

\

Host B

B

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

premature timeout

Transport Layer 3-68

TCP: retransmission scenarios

Host A Hos

E

— timeout —

g

\)

\

Seq=92, 8 bytes of data
\

Seq=100, 20 bytes of da

ACK=100
X<

ACK=120

/

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

=

==

Transport Layer 3-69

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver T'CP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-70

TCP fast retransmit

% time-out period often
relatively long:

* long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

» sender often sends
many segments back-
to-back

" if segment is lost, there

will likely be many
duplicate ACKs.

— TCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked
segment lost, so don t

wait for timeout

Transport Layer 3-71

TCP fast retransmit

Host A Host B
< e

— Seq=92, 8 bytes of data

T Seq= 100,72]‘thes.@fd'a\ta.
\X

|_ACK=100
ACK=100
ACK=100
“ACK=100
ACK=
Seq=100, 20 bytes of data

timeout

A A

v v

fast retransmit after sender

receipt of triple duplicate ACK
Transport Layer 3-72

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-73

TCP flow control

application may

application
process

remove data from

application

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control

TCP socket
receiver buffers

|

TCP
code

receiver controls sender, so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

IP

code @

| | v
I | !
from sender |

receiver protocol stack

Transport Layer 3-74

TCP flow control

\/
0’0

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RevBuffer size set via
socket options (typical default

is 4096 bytes)
" many operating systems
autoadjust RcvBuffer
sender Iimits amount of
unacked (in-flight”) data to
receiver s rwnd value

guarantees receive buffer
will not overflow

to application process

FI_‘

T

RcvBuffer

T

rwnd

\4

buffered data

free buffer space

1

TCP segment payloads

receiver-side buffering

Transport Layer 3-75

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-76

Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

< agree on connection parameters

application application

o
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

ZV/ network network
- |
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-77

Agreeing to establish a connection

2-way handshake:
Q: will 2-way handshake

3 _ ;‘.'-'."-én-.:_ .
g; L-:ﬁ:',-‘i{ always work in
b &4
- il network?
Let’ s talk .
oK T ESTAB + variable delays
ESTAB & + retransmitted messages

(e.g. req_conn(x)) due to
message loss

= E % message reordering
Didd ’ “ ” .
choose x ~Rq_conn(’iL, & can t see other side
—® ESTAB

acc_conn(x)
ESTAB &—

Transport Layer 3-78

Agreeing to establish a connection

2-way handshake failure scenarios:

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(>_<L

D

% ESTAB

acc_conn(x)

req_conn(x)

\

_ connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

g B

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

—
req_conn(x
>- ESTAB

acc_conn(x)

client
terminates

data(x+1)
™
_ _ connection _ |
X completes server
\
req__conn(x) forgets x
ESTAB
data(x+1)___ accept
data(x+1)

Transport Layer 3-79

TCP 3-way handshake

client state q E server state
LISTEN h

LISTEN
choose init seq num, x

send TCP SYN msg \
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data
T~ received ACK(y)
indicates client is live v
ESTAB

Transport Layer 3-80

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A .
Socket clientSocket =
SYN(X) v newSocket ("hostname", "port
SYNACK(seq=y,ACKnum=x+1) number?) ;
create new socket for SYN(seq =X)
communication back to client
l v
‘ ‘ SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-81

TCP: closing a connection

% client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own FIN
<+ simultaneous FIN exchanges can be handled

Transport Layer 3-82

TCP: closing a connection

client state
ESTAB

clientSocket.close ()

FIN_WAIT_1

|

FIN_WAIT_2

TIMED_WAIT

CLOSED

can no longer
send but can
receive data

wait for server
close

timed wait
for 2*max
segment lifetime

|

g

‘“‘s!l/

T Fibit=1
it=1, Seq=X\‘

/
ACKbit=1; ACKnum=x+1
—

/
‘/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

can still
send data

can no longer
send data

server state
ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-83

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-84

Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
+ a top-10 problem!

Transport Layer 3-85

C

original data: }\in

auses/costs of congestion: scenario |

throughput: }"out

two senders, two

Ao

receivers Host A

one router, infinite

unlimited shared

buffers _ % .

output link capacity: R
no retransmission

oY 30 .
5 |
P :
< |
|

N, R/2

< maximum per-connection
throughput: R/2

=)
|
output link buffers I' E

delay

A

n R

+ large delays as arrival rate,
A\, approaches capacity

in?

Transport Layer 3-86

Causes/costs of congestion: scenario 2

% one router, finite buffers

+ sender retransmission of timed-out packet

= application-layer input = application-layer output: A;, =
A

out
®* transport-layer input includes retransmissions : \., > A,

A, : original data

A | A

A'..: original data, plus
retransmitted data

finite shared output — n
Host B link buffers

Transport Layer 3-87

Causes/costs of congestion: scenario 2

R/2 - mmm - ,
idealization: perfect |
knowledge E i

< :

<+ sender sends only when 5
router buffers available .

BB-— A\, : original data
[P

out

\'..: original data, plus
retransmitted data

free buffer space!

finite shared output — n
link buffers
Transport Layer 3-88

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if
packet known to be lost

copy [l @«

W{— A, : original data

M, original data, plus

retransmitted data

no buffer space!

Transport Layer 3-89

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,

dropped at router due
to full buffers

+ sender only resends if
packet known to be lost

R/2

}\'out

«J— A : original data

M, original data, plus
retransmitted data

free buffer space!

when gending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

}\' R/2

Transport Layer 3-90

Causes/costs of congestion: scenario 2

Readlistic: duplicates

2 —— e
<+ packets can be lost, dropped e
at router due to full buffers . Whensending at R/2,
. *g i some pagke_ts are
<+ sender times out prematurely, < . retransmissions
d. . b h f | including duplicated
sendaing two coples, both o i that are delivered!
which are delivered 7 R/

in
Q)
(&I !
. oy Min A——)\
N ‘<)\"in out

free buffer space!

Transport Layer 3-91

Causes/costs of congestion: scenario 2

Readlistic: duplicates

=] S — P —
<+ packets can be lost, dropped A
at router due to full buffers _ e
. O | o
<+ sender times out prematurely, < . retransmissions
. . : including duplicated
which are delivered ; o

in

“costs’ of congestion:

» more work (retrans) for given “goodput”

< unneeded retransmissions: link carries multiple copies of pkt
* decreasing goodput

Transport Layer 3-92

Causes/costs of congestion: scenario 3

Q: what happens as A, and |
increase !

A:asred A _ increases,all arriving
blue pkts at upper queue are
dropped, blue throughput = 0

» four senders
» multihop paths
< timeout/retransmit

Host A A, : original data Aout Host B
*** \'..: original data, plus _
retransmitted data

finite shared output
lipk buffers

Host D
+' Host C
49 |
¢
|
. N\
B e —Hp

Transport Layer 3-93

Causes/costs of congestion: scenario 3

C/2

}‘out

13 77 o
another "cost of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-94

Approaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion __ _network-assisted =
control: congestion control:
» no explicit feedback % routers provide
from network feedback to end systems
<+ congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-95

Case study: ATM ABR congestion control

ABR: available bit rate:
+ “elastic service”

» if sender’ s path
“underloaded”:

= sender should use
available bandwidth

» if sender’ s path
congested:
" sender throttled to

minimum guaranteed
rate

RM (resource management)

cells:

+ sent by sender, interspersed

with data cells

+ bits in RM cell set by switches

(“network-assisted)

= N/ bit: no increase in rate
(mild congestion)

= C| bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-96

Case study: ATM ABR congestion control

I RM cell H data cell

y >
e =a

+ two-byte ER (explicit rate) field in RM cell

= congested switch may lower ER value in cell

= senders’ send rate thus max supportable rate on path
« EFCI bit in data cells: set to | in congested switch

" if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

&
v

Transport Layer 3-97

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-98

TCP congestion control: additive increase

multiplicative decrease
% approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

= multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 3-99

TCP Congestion Control: details

sender sequence number space
|¢&—— cwnd —>

last byte J ‘ L last byte
yet ACKed
(“in—
flight™)

< sender limits transmission:

LastByteSent- < cwnd

LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

\/
0’0

roughly: send cwnd
bytes, wait RTT for

ACKS, then send
more bytes

cwnd

rate =~ bytes/sec

Transport Layer 3-100

TCP Slow Start

+» when connection begins,
Increase rate
exponentially until first
loss event:
" initially cwnd = | MSS
" double cwnd every RTT

" done by incrementing
cwnd for every ACK
received

% summary: initial rate is
slow but ramps up
exponentially fast

Host A Host B

time

Transport Layer 3-101

TCP: detecting, reacting to loss

%+ loss indicated by timeout:
* cwnd set to | MSS;

= window then grows exponentially (as in slow start)
to threshold, then grows linearly

%+ loss indicated by 3 duplicate ACKs: TCP RENO

" dup ACKSs indicate network capable of delivering
some segments

= cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-102

TCP: switching from slow start to CA

Q: when should the
exponential
. . 14 —
increase switch to TCP Reno
linear?

A: when cwnd gets
to |/2 of its value
before timeout.

—
N
|

10—
ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

) 0
Implementatlon: 01 2 34 56 7 8 910111213 14 15
’:’ variable SsthreSh Transmission round

<+ on loss event, ssthresh

is set to |/2 of cwnd just
before loss event

Transport Layer 3-103

S

u

mmary: TCP Congestion Control

. % new ACF
duplicate ACK i I'l i cwnd = cwnd + MSS « (MSS/cwnd)

newACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

dupACKcount++

!

A

cwnd =1 MSS
ssthresh = 64 KB

_dupACKcount =0 A -
) (9’;0\ timeout
'\ $))'ssthresh = cwnd/2 ,
IR </ cwnd = 1 MSS duplicate ACK
{2y timeout dupACKcount =0 dupACKcount++
4’ ssthresh = ownd/2 A retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 zZa
retransmit missing segment ((c s)
timeout ‘N> /
ssthresh = cwnd/2
cwnd = 1 New ACK
dupACKcount =0 m
dupACKcount == retransmit missing segment ng&]C}chs)i " triso dupACKcount ==
nd 2 sethresh '+ 3 oG < Ssthresh - 3
cwnd = ssthresh + wnd =
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-104

TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

< W: window size (measured in bytes) Where loss occurs
" avg. window size (# in-flight bytes) is ¥4 W
= avg. thruput is 3/4WV per RTT

avg TCP thruput = W

RTT bytes/sec

N14444%4

INT®

Transport Layer 3-105

TCP Futures: TCP over “long, fat pipes”

+» example: 1500 byte segments, |100ms RTT, want
|0 Gbps throughput

+» requires W = 83,333 in-flight segments

+ throughput in terms of segment loss probability, L
[Mathis 1997];

_1.22-MSS
TCP throughput = RTTJE

=?» to achieve 10 Gbps throughput, need a loss rate of L
= 2-10-'% — a very small loss rate!

+ new versions of TCP for high-speed

Transport Layer 3-106

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

N

TCP connection 2

e

bottleneck
router
capacity R

Transport Layer 3-107

Why is TCP fair!?

two competing sessions:
+ additive increase gives slope of |, as throughout increases
<« multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 20

Connection 1 throughput R

Transport Layer 3-108

Fairness (more)

Fairness and UDP Fairness, parallel TCP
» multimedia apps often connections
do not use TCP + application can open
" do not want rate multiple parallel
throttled by congestion connections between two

control

< instead use UDP;

= send audio/video at
constant rate, tolerate < e.g., link of rate R with 9

hosts
< web browsers do this

packet loss existing connections:
" new app asks for | TCP, gets rate
R/10

" new app asks for || TCPs, gets R/2

Transport Layer 3-109

Chapter 3: summary

<+ principles behind
transport layer services:
= multiplexing,
demultiplexing
" reliable data transfer
= flow control
" congestion control

< Instantiation,
implementation in the
Internet
= UDP
= TCP

next:

<+ leaving the
network
“edge” (application
, transport layers)

< into the network
(11 2
core

Transport Layer 3-110

