
 

 

Interfacing 



Introduction 

 Embedded system functionality aspects 

 Processing 
 Transformation of data 

 Implemented using processors 

 Storage  
 Retention of data 

 Implemented using memory 

 Communication 
 Transfer of data between processors and memories 

 Read/Write a memory 

 Read/Write peripheral’register 

 Implemented using buses 

 Called interfacing 



A simple bus 

 Wires: 

 Uni-directional or bi-directional 

 One line may represent multiple wires 

 Bus 

 Set of wires with a single function 

 Address bus, data bus 

 Or, entire collection of wires 

 Address, data and control 

 Associated protocol: rules for 

communication 

bus structure 

Processor Memory 
rd'/wr 

enable 

addr[0-11] 

data[0-7] 

bus 



Ports 

 Conducting device on periphery 

 Connects bus to processor or memory 

 Often referred to as a pin 

 Actual pins on periphery of IC package that plug into socket on printed-circuit board 

 Sometimes metallic balls instead of pins 

 Today, metal “pads” connecting processors and memories within single IC 

 Single wire or set of wires with single function 

 E.g., 12-wire address port 

 

bus 

Processor Memory 
rd'/wr 

enable 

addr[0-11] 

data[0-7] 

port 



Timing Diagrams 
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 Most common method for describing a 
communication protocol 

 Time proceeds to the right on x-axis 

 Control signal: low or high 

 May be active low (e.g., go’, /go, or go_L) 

 Use terms assert (active) and deassert 

 Asserting go’ means go=0 

 Data signal: not valid or valid 

 Protocol may have subprotocols 

 Called bus cycle, e.g., read and write 

 Each may be several clock cycles 

 Read example 

 rd’/wr set low,address placed on addr for at 
least tsetup time before enable asserted, enable 
triggers memory to place data on data wires 
by time tread  

write protocol 

rd'/wr 

enable 

addr 

data 

tsetup twrite 

read protocol 

rd'/wr 

enable 

addr 

data 

tsetup tread 



Basic protocol concepts:  

 
Master Servant req 

ack 

req 

data 

Master Servant 

data 

req 

data 

taccess 

req 

data 

ack 

1. Master asserts req to receive data 

2. Servant puts data on bus within time taccess 

1 

2 

3 

4 

3. Master receives data and deasserts req 

4. Servant ready for next request 

1 

2 

3 

4 

1. Master asserts req to receive data 

2. Servant puts data on bus and asserts ack 

3. Master receives data and deasserts req 

4. Servant ready for next request 

Strobe protocol Handshake protocol 



Basic protocol concepts 

 Actor: master initiates, servant (slave) respond 

 Direction: sender, receiver 

 Addresses: special kind of data 

 Specifies a location in memory, a peripheral, or a register within a peripheral 

 Time multiplexing 

 Share a single set of wires for multiple pieces of data 

 Saves wires at expense of time 

data serializing address/data muxing 

Master Servant req 

data(8) 

data(15:0) data(15:0) 

mux demux 

Master Servant req 

addr/data 

req 

addr/data 

addr data 

mux demux 

addr data 

req 

data 15:8 7:0 addr data 

Time-multiplexed data transfer 



A strobe/handshake compromise 
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Fast-response case 

req 

data 

wait 

1 3 

4 

1. Master asserts req to receive data 

2. Servant puts data on bus within time taccess 

3. Master receives data and deasserts req 

4. Servant ready for next request 

2 

Slow-response case 

Master Servant req 

wait 

data 

req 

data 

wait 

1 

3 

4 

1. Master asserts req to receive data 

2. Servant can't put data within taccess, asserts wait ack 

3. Servant puts data on bus and deasserts wait 

4. Master receives data and deasserts req 

2 

taccess taccess 

5. Servant ready for next request 

5 

     (wait line is unused) 



ISA bus protocol – memory access 
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 ISA: Industry Standard Architecture 

 Common in 80x86’s 

 Features 

 20-bit address 

 Compromise strobe/handshake control 

 4 cycles default, Unless CHRDY deasserted – 

resulting in additional wait cycles (up to 6) 

 

Microprocessor Memory I/O Device 

ISA bus 



ISA bus protocol – memory access 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[19-0] 

 

ALE 

 

/MEMW 

 

CHRDY 

 

 

 

C1                     C2                    WAIT               C3        C4 

 

     DATA 

ADDRESS 

memory-write bus cycle 

ADDRESS 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[19-0] 

 

ALE 

 

/MEMR 

 

CHRDY 

 

 

 

C1                     C2                    WAIT              C3         C4 

 

DATA 

memory-read bus cycle 



I/O devices 

© 2000 Morgan Kaufman Overheads for Computers as Components 

 Usually includes some non-digital component. 

 Typical digital interface to CPU: 

CPU 

status 

reg 

data 

reg 

m
ec

h
an

is
m

 



 Processor talks to both memory and peripherals 
using same bus – two ways to talk to peripherals 

 Memory-mapped I/O 

 Peripheral registers occupy addresses in same address 
space as memory 

 e.g., Bus has 16-bit address 

 lower 32K addresses may correspond to memory 

 upper 32k addresses may correspond to peripherals 

 

Types of bus-based I/O:  

memory-mapped I/O and standard I/O 



Memory Mapped I/O 

Single Memory & I/O Bus  

No Separate I/O Instructions 

CPU 

Interface Interface 

Peripheral Peripheral 

Memory 

ROM 

RAM 

I/O 



Types of bus-based I/O:  

memory-mapped I/O and standard I/O 

 Standard I/O (I/O-mapped I/O) 

 Additional pin (M/IO) on bus indicates whether a memory or 
peripheral access 

 e.g., Bus has 16-bit address 

 all 64K addresses correspond to memory when M/IO set to 0 

 all 64K addresses correspond to peripherals when M/IO set to 1 

 



Standard I/O (I/O-mapped I/O) 

Single Memory & I/O Bus  
Separate I/O Instructions 

CPU 

Interface Interface 

Peripheral Peripheral 

Memory 

ROM 

RAM 

I/O 



Memory-mapped I/O vs. Standard 

I/O 

 Memory-mapped I/O 
 Requires no special instructions 

 Assembly instructions involving memory like MOV and ADD work with 
peripherals as well 

 Standard I/O requires special instructions (e.g., IN, OUT) to move data 
between peripheral registers and memory 

 Standard I/O 

 No loss of memory addresses to peripherals  

 Special-purpose I/O instructions 

 Intel x86 provides in, out instructions.  
 (Es. IN AL, port  e OUT port, AL   with port= interface address) 

 

 Simpler address decoding logic in peripherals possible 
 When number of peripherals much smaller than address space then high-

order address bits can be ignored 
 smaller and/or faster comparators 



Intel x86 Standard I/O 

LPT Connection Pin I/O Direction Register Address 
1 Output 0th bit of register #2  

 2-9 Output 0th bit of register #0 

14,16,17 Output 1,2,3th bit of register #2 

10,11,12,13,15 Input 6,7,5,4,3th bit of register #1 

PC Parallel port

Pin 13

Pin 2

Switch

LED

LPT address = 3BCh  
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Intel x86 Standard I/O 

; This program consists of a sub-routine that reads the state of the input pin, 

determining the on/off state of our switch and asserts the output pin, turning 

the LED on/off accordingly 

.386 

 

CheckPort proc 

 push ax   ; save the content 

 push dx   ; save the content 

 mov dx, 3BCh + 1 ; base + 1 for register #1  

 in al, dx  ; read register #1 

 and  al, 10h  ; mask out all but bit # 4 

 cmp al, 0  ; is it 0? 

 jne SwitchOn  ; if not, we need to turn the LED on 

 



Intel x86 Standard I/O 

SwitchOff: 

 mov dx, 3BCh + 0 ; base + 0 for register #0 

 in al, dx  ; read the current state of the port 

 and al, feh  ; clear first bit (masking) 

 out dx, al  ; write it out to the port 

 jmp Done          ; we are done 

 

SwitchOn: 

 mov dx, 3BCh + 0 ; base + 0 for register #0 

 in al, dx  ; read the current state of the port 

 or al, 01h  ; set first bit (masking) 

 out dx, al  ; write it out to the port 

  

Done:  pop dx  ; restore the content 

  pop ax  ; restore the content 

CheckPort endp 



ARM memory-mapped I/O 

 Define location for device: 

DEV1 EQU 0x1000 

 Read/write code: 

LDR r1,#DEV1 ; set up device adrs 

LDR r0,[r1] ; read DEV1 

 

LDR r0,#8 ; set up value to write 

STR r0,[r1] ; write value to device 



ISA bus 

 ISA supports standard I/O 

 /IOR distinct from /MEMR for 

peripheral read 

 /IOW used for writes 

 16-bit address space for I/O vs. 

20-bit address space for 

memory 

 Otherwise very similar to 

memory protocol 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[15-0] 

 

ALE 

 

/IOR 

 

CHRDY 

 

 

 

  C1                    C2                   WAIT           C3           C4 

DATA 

ADDRESS 

ISA I/O bus read protocol 

Microprocessor Memory I/O Device 

ISA bus 

ADDRESS 

CYCLE 

 

CLOCK 

 

D[7-0] 

 

A[19-0] 

 

ALE 

 

/MEMR 

 

CHRDY 

 

 

 

C1                    C2                    WAIT              C3       C4 

 

DATA 

ISA memory-read bus cycle 



A basic memory protocol 

 Interfacing an 8051 to external memory 

 Ports P0 and P2 support port-based I/O when 8051 internal memory 
being used 

 Those ports serve as data/address buses when external memory is being 
used 

 16-bit address and 8-bit data are time multiplexed; low 8-bits of address 
must therefore be latched with aid of ALE signal 

P0 

 

P2 

 

Q 

 

ALE 

 

/RD 

Adr. 7..0 

Adr. 15…8 

Adr. 7…0 

Data 
 

 

 

 

 

 

 

 

 

 
8051 

 

 

 

 
74373 

P0 
 

 

 

 

 
HM6264 

D Q 

8 

P2 

ALE G 

A<0...15> 

D<0...7> 

/OE 

/WE 

/CS 

/WR 

/RD 

/CS1 

/PSEN 

CS2 

 

 

 
 
27C256 

/CS 

A<0...14> 

D<0...7> 

/OE 
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Microprocessor interfacing: 

interrupts 

 Suppose a peripheral intermittently receives data, 
which must be serviced by the processor 

 The processor can poll the peripheral regularly to see if 
data has arrived – wasteful 

 The peripheral can interrupt the processor when it has 
data 

 Requires an extra pin or pins: Int 

 If Int is 1, processor suspends current program, jumps to 
an Interrupt Service Routine, or ISR 

 Known as interrupt-driven I/O 

 Essentially, “polling” of the interrupt pin is built-into the 
hardware, so no extra time! 



Sistema di interruzione 

 La richiesta di interruzione di un dispositivo di I/O è 

asincrona rispetto all’esecuzione delle istruzioni 

• Non è associata ad alcuna istruzione e può essere attivata 

durante l’esecuzione di ogni istruzione 

• Viene valutata solo alla fine dell’esecuzione di ogni istruzione 

 

 
Fetch 

Decode 

Execute 

IRQ=1 
V F 

Routine di 

servizio 



Funzioni del sistema di interruzione 

F1. Deve garantire che una interruzione non provochi 

 interferenze sul programma interrotto. 

 

F2. È necessario che il sistema di interruzione 

riconosca il  dispositivo interrompente 

 

F3. Deve provvedere alla gestione delle priorità 

delle richieste  di interruzioni 



Cambio di contesto 

… 

add 

sub 

and 

… 

… 

store 

…. 

programma 

utente 

routine di 

servizio 

Memoria 

(1) Interruzione 

(2) Salvataggio contesto 

(3) PC=Indirizzo routine 

(4) Esecuzione routine 

(5) Ripristino contesto 



Salvataggio del contesto 

Contesto:    Program Counter (PC), Registro di Stato (SR), 
   Registri di uso generale 

 

PC e SR devono essere salvati via hardware. 

 Esempio: 

• MEM[SP]=SR; SP--; 

• MEM[SP]=PC; SP--; 

 

Gli altri registri possono essere salvati via software 

• Vengono salvati solo i registri che verranno utilizzati. 

• Questo compito è demandato alla routine di servizio che lo 
svolge nel suo preambolo.  

 

 



Salvataggio del contesto 

 Il salvataggio del contesto deve essere non 

interrompibile per evitare situazioni anomale 

• Il processore viene dotato di un flag IE indicante la 

interrompibilità del processore.  

• Nel momento in cui viene accettata la richiesta di 

interruzione IE viene resettato e il processore diventa 

non interrompibile 

• Per rendere nuovamente interrompibile il processore 

bisogna usare un’apposita istruzione 

 

 

 



Un sistema di interruzione 

 Quando il dispositivo è pronto, pone STATUS=1 

 Se IM=1 e le interruzioni sono abilitate (IE=1) viene 
servita la richiesta di interruzione (al termine 
dell’istruzione corrente). 

• Viene posto IE=0 

• Viene salvato il contesto 

• PC=Indirizzo della Routine di servizio 

 

 

Status 

IM 

Interfaccia 

IE 

CPU 

IRQ INT Controllo 

IM=Interrupt Mask 



Ripristino del contesto 

 Via software, nell’epilogo della routine di servizio, 
vengono ripristinati i valori dei registri salvati nello 
stack (POP) 

 L’uscita dalla routine di servizio avviene mediante 
un’apposita istruzione di ritorno da interruzione (RTI) 
che ripristina la parte di contesto salvata via hardware 

 Esempio 

•  SR=MEM[SP]; SP++; 

• PC=MEM[SP]; SP++; 

 In alcuni processori la RTI riabilita anche il flip flop IE 
(IE=1), in altri è necessario utilizzare un’apposita 
istruzione; 

 



Microprocessor interfacing: interrupts 

 What is the address of the Interrupt Service Routine? 

 Fixed interrupt 

 Address built into microprocessor, cannot be changed 

 Either ISR stored at address or a jump to actual ISR stored if 

not enough bytes available 

 Multiple Int pins to support multiple peripherals  or one pin 

and polling of the peripherals 

 Vectored interrupt 

 Peripheral must provide the address 

 Common when microprocessor has multiple peripherals 

connected by a system bus 

 Compromise: interrupt address table 



Interrupt-driven I/O using fixed ISR 

location  
32 

μP 

P1 P2 

System bus 

Int 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 



Interrupt-driven I/O using fixed ISR 

location 

1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000. 

2: P1 asserts Int to request 

servicing by the 

microprocessor. 3: After completing instruction at 100, μP 

sees Int asserted, saves the PC’s value of 

100, and sets PC to the ISR fixed location 

of 16.  

4(a): The ISR reads data from 0x8000, 

modifies the data, and writes the resulting 

data to 0x8001.  

5: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing. 

 

4(b): After being read, P1 de-

asserts Int. 

T
im

e 



Interrupt-driven I/O using vectored 

interrupt  
34 

μP 

P1 P2 

System bus 

Data memory 

0x8000 0x8001 

16: MOV R0, 0x8000  

17: # modifies R0  

18: MOV 0x8001, R0  

19: RETI  # ISR return 

ISR  

100: 

101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Int 
Inta 

16 



Interrupt-driven I/O using vectored 

interrupt 

1(a): μP is executing its main program. 1(b): P1 receives input data in a 

register with address 0x8000. 

2: P1 asserts Int to request servicing 

by the microprocessor. 3: After completing instruction at 100, μP sees Int 

asserted, saves the PC’s value of 100, and asserts 

Inta. 

5(a): μP jumps to the address on the bus (16). 

The ISR there reads data from 0x8000, modifies 

the data, and writes the resulting data to 0x8001.  

6: The ISR returns, thus restoring PC to 

100+1=101, where μP resumes executing. 
 

5(b): After being read, P1 deasserts 

Int. 

T
im

e 

4: P1 detects Inta and puts interrupt 

address vector 16 on the data bus. 



Interrupt address table 

 Compromise between fixed and vectored interrupts 

 One interrupt pin 

 Table in memory holding ISR addresses (maybe 256 

words) 

 Peripheral doesn’t provide ISR address, but rather 

index into table 

 Fewer bits are sent by the peripheral 

 Can move ISR location without changing peripheral 



Riconoscimento mediante vettore delle 

interruzioni 

 Nell’interfaccia è presente un registro in cui è memorizzato il codice 

identificativo del dispositivo (INV).  

 In seguito alla richiesta di interruzione IRQ=1, se il processore è 

interrompibile (IE=1), attiva in risposta il segnale IACK. 

 Il codice identificativo viene inviato sul bus dati in risposta al segnale IACK 

generato dal processore. 

 

 

Status 

IM 

Interfaccia 

IE 

CPU 

IRQ INTR Controllo 

INV 

IACK 



Riconoscimento mediante vettore delle 

interruzioni 

 In memoria è presente una tabella, Interrupt 

Vector Table (IVT), che contiene gli indirizzi 

delle routine di servizio dei dispositivi. 

 Il codice inviato dal dispositivo di I/O, 

Interrupt Vector Number (IVN), rappresenta 

l’indice della tabella corrispondente alla 

routine di servizio. 

 La IVT di norma è memorizzata a partire 

dalle prime posizioni della memoria in modo 

da codificare l’IVN con pochi bit. 

 Il riempimento della IVT (o di parte di essa) 

viene eseguita ad opera del programmatore 

Indirizzo Rsi 

Indirizzo RSk 

…. 

…. 

…. 

IVN 

IVT 

RSi 

RSk 
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Additional interrupt issues 

 Maskable vs. non-maskable interrupts 

 Maskable: programmer can set bit that causes processor to ignore 
interrupt 

 Important when in the middle of time-critical code 

 Non-maskable: a separate interrupt pin that can’t be masked 

 Typically reserved for drastic situations, like power failure requiring 
immediate backup of data to non-volatile memory 

 Jump to ISR 

 Some microprocessors treat jump same as call of any subroutine 

 Complete state saved (PC, registers) – may take hundreds of cycles 

 Others only save partial state, like PC only 

 Thus, ISR must not modify registers, or else must save them first 

 Assembly-language programmer must be aware of which registers stored 



Direct memory access 

 Buffering 
 Temporarily storing data in memory before processing 

 Data accumulated in peripherals commonly buffered 

 Microprocessor could handle this with ISR 
 Storing and restoring microprocessor state inefficient 

 Regular program must wait 

 DMA controller more efficient 
 Separate single-purpose processor 

 Microprocessor relinquishes control of system bus to DMA controller 

 Microprocessor can meanwhile execute its regular program 

 No inefficient storing and restoring state due to ISR call 

 Regular program need not wait unless it requires the system bus 

 Harvard archictecture – processor can fetch and execute instructions as long as 
they don’t access data memory – if they do, processor stalls 



Peripheral to memory transfer without 

DMA, using vectored interrupt 

1(a): μP is executing its main program. 1(b): P1 receives input data in a register 

with address 0x8000. 

2: P1 asserts Int to request servicing by 

the microprocessor. 
3: After completing instruction at 100, μP sees Int 

asserted, saves the PC’s value of 100, and asserts Inta. 

5(a): μP jumps to the address on the bus (16). The ISR 

there reads data from 0x8000 and then writes it to 

0x0001, which is in memory.  

6: The ISR returns, thus restoring PC to 100+1=101, 

where μP resumes executing. 
 

5(b): After being read, P1 deasserts Int. 

T
im

e 

4: P1 detects Inta and puts interrupt 

address vector 16 on the data bus. 



Peripheral to memory transfer with 

DMA (cont’) 

1(a): P is executing its main program. It has 

already configured the DMA ctrl registers 

 

1(b): P1 receives input data in a register with 

address 0x8000. 

Data memory μP 

DMA ctrl P1 

System bus 

0x8000 101: 

instruction  

instruction  

... 

Main program 
... 

Program memory 

PC 

100 

Dreq 

Dack 

0x0000 0x0001 

100: 

No ISR needed! 

0x0001 

0x8000 

ack 

req 



Peripheral to memory transfer with 

DMA 

1(a): μP is executing its main program. 

It has already configured the DMA ctrl 

registers. 

1(b): P1 receives input 

data in a register with 

address 0x8000. 

2: P1 asserts req to request 

servicing by DMA ctrl. 

7(b): P1 de-asserts req. 

T
im

e 

3: DMA ctrl asserts Dreq 

to request control of 

system bus. 

4: After executing instruction 100, μP 

sees Dreq asserted, releases the system 

bus, asserts Dack, and resumes 

execution. μP stalls only if it needs the 

system bus to continue executing. 
5: (a) DMA ctrl asserts 

ack (b) reads data from 

0x8000 and (b) writes that 

data to 0x0001.  

6:. DMA de-asserts Dreq 

and ack completing 

handshake with P1.  
7(a): μP de-asserts Dack and resumes 

control of the bus. 



Arbitration: Priority arbiter 

 Consider the situation where multiple peripherals request service from single 
resource (e.g., microprocessor, DMA controller) simultaneously - which gets 
serviced first? 

 Priority arbiter 

 Single-purpose processor 

 Peripherals make requests to arbiter, arbiter makes requests to resource 

 Arbiter connected to system bus for configuration only 

 
Micro-

processor 

Priority  

arbiter 

Peripheral1 

System bus 

Int 
3 

5 
7 

Inta 
Peripheral2 

Ireq1 

Iack2 

Iack1 

Ireq2 

2 2 

6 



Arbitration using a priority arbiter 
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1. 1. Microprocessor is executing its program. 

2. 2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2.  

3. 3. Priority arbiter sees at least one Ireq input asserted, so asserts Int. 

4. 4. Microprocessor stops executing its program and stores its state. 

5. 5. Microprocessor asserts Inta. 

6. 6. Priority arbiter asserts Iack1 to acknowledge Peripheral1. 

7. 7. Peripheral1 puts its interrupt address vector on the system bus 

8. 8. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns(and 

completes handshake with arbiter). 

9. 9. Microprocessor resumes executing its program.  

Micro-

processor 

Priority  

arbiter 

Peripheral1 

System bus 

Int 
3 

5 
7 

Inta 
Peripheral2 

Ireq1 

Iack2 

Iack1 

Ireq2 

2 2 

6 



Arbitration: Priority arbiter 
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 Types of priority 

 Fixed priority 

 each peripheral has unique rank 

 highest rank chosen first with simultaneous requests 

 preferred when clear difference in rank between peripherals 

 Rotating priority (round-robin) 

 priority changed based on history of servicing 

 better distribution of servicing especially among peripherals with 

similar priority demands 



Arbitration: Daisy-chain arbitration 
47 

 Arbitration done by peripherals 
 Built into peripheral or external logic added 

 req input and ack output added to each peripheral 

 Peripherals connected to each other in daisy-chain manner 
 One peripheral connected to resource, all others connected “upstream” 

 Peripheral’s req flows “downstream” to resource, resource’s ack flows 
“upstream” to requesting peripheral 

 Closest peripheral has highest priority 

P 
System bus 

Int 

Inta 

Peripheral1 

Ack_in Ack_out 

Req_out Req_in 

Peripheral2 

Ack_in Ack_out 

Req_out Req_in 

Daisy-chain aware peripherals 

0 



Arbitration: Daisy-chain arbitration 
48 

 Pros/cons 

 Easy to add/remove peripheral - no system redesign needed 

 Does not support rotating priority 

 One broken peripheral can cause loss of access to other 

peripherals 

P 
System bus 

Int 

Inta 

Peripheral1 

Ack_in Ack_out 

Req_out Req_in 

Peripheral2 

Ack_in Ack_out 

Req_out Req_in 

Daisy-chain aware peripherals 

0 

Micro-

processor 

Priority  

arbiter 

Peripheral

1 

System bus 

Int 

Inta 
Peripheral

2 

Ireq1 

Iack2 

Iack1 

Ireq2 



Intel 8237 DMA controller 
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Intel 8237 D[7..0] 

A[19..0] 

ALE 

MEMR 

MEMW 

IOR 

IOW 

 

HLDA 

HRQ 

REQ 0 

ACK 0 

 

REQ 1 

ACK 1 

 

REQ 2 

ACK 2 

 

REQ 3 

ACK 3 

D[7..0] These wires are connected to the system bus (ISA) and are used by the 

microprocessor to write to the internal registers of the 8237.

A[19..0] These wires are connected to the system bus (ISA) and are used by the DMA to 

issue the memory location where the transferred data is to be written to.  The 8237 

is also addressed by the micro-processor through the lower bits of these address 

lines.

ALE* This is the address latch enable signal.  The 8237 use this signal when driving the 

system bus (ISA).

MEMR* This is the memory write signal issued by the 8237 when driving the system bus 

(ISA). 

MEMW* This is the memory read signal issued by the 8237 when driving the system bus 

(ISA). 

IOR* This is the I/O device read signal issued by the 8237 when driving the system bus 

(ISA) in order to read a byte from an I/O device

IOW* This is the I/O device write signal issued by the 8237 when driving the system bus 

(ISA) in order to write a byte to an I/O device. 

HLDA This signal (hold acknowledge) is asserted by the microprocessor to signal that it 

has relinquished the system bus (ISA).

HRQ This signal (hold request) is asserted by the 8237 to signal to the microprocessor a 

request to relinquish the system bus (ISA).

REQ 0,1,2,3 An attached device to one of these channels asserts this signal to request a DMA 

transfer.

ACK 0,1,2,3 The 8237 asserts this signal to grant a DMA transfer to an attached device to one of 

these channels.

*See the ISA bus description in this chapter for complete details.



Multilevel bus architectures 

 A microprocessor-based embedded system can have numerous 

types of communications 

 High speed communications between processor and memory 

 Less frequent communications between processors and its 

peripherals can require less speed 

 Don’t want one bus for all communication 

– Peripherals would need high-speed, processor-specific bus interface 

• excess gates, power consumption, and cost; less portable 

– Too many peripherals slows down bus 

 

 



Multilevel bus architectures 

 Processor-local bus 

 High speed, wide, most frequent 
communication 

 Connects microprocessor, cache, memory 
controllers, etc. 

 Peripheral bus 

 Lower speed, narrower, less frequent 
communication 

 Typically industry standard bus (ISA, PCI) for 
portability 

 Bridge 
 Single-purpose processor converts communication 

between busses 

 

Processor-local bus 

Micro- 

processor 

Cache Memory 

controller 

DMA 

controller 

Bridge Peripheral Peripheral Peripheral 

Peripheral bus 



Advanced communication principles 

 Layering 

 Break complexity of communication protocol into pieces easier to design and 

understand 

 Lower levels provide services to higher level 

 Lower level might work with bits while higher level might work with packets of data 

 Physical layer 

 Lowest level in hierarchy 

 Medium to carry data from one actor (device or node) to another 

 Parallel communication 

 Physical layer capable of transporting multiple bits of data 

 Serial communication 

 Physical layer transports one bit of data at a time 

 Wireless communication 

 No physical connection needed for transport at physical layer 



Parallel communication 

 Multiple data, control, and possibly power wires 

 One bit per wire 

 High data throughput with short distances 

 Typically used when connecting devices on same IC or same 

circuit board 

 Bus must be kept short 

 long parallel wires result in high capacitance values which requires more time 

to charge/discharge 

 Data misalignment between wires increases as length increases 

 Higher cost, bulky 
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Serial communication 

 Single data wire, possibly also control and power wires 

 Words transmitted one bit at a time 

 Higher data throughput with long distances 

 Less average capacitance, so more bits per unit of time 

 Cheaper, less bulky 

 More complex interfacing logic and communication protocol 

 Sender needs to decompose word into bits 

 Receiver needs to recompose bits into word 

 Control signals often sent on same wire as data increasing protocol 

complexity 
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Wireless communication 

 Infrared (IR) 

 Electronic wave frequencies just below visible light spectrum 

 Diode emits infrared light to generate signal 

 Infrared transistor detects signal, conducts when exposed to infrared 

light 

 Cheap to build 

 Need line of sight, limited range 

 Radio frequency (RF) 

 Electromagnetic wave frequencies in radio spectrum 

 Analog circuitry and antenna needed on both sides of transmission 

 Line of sight not needed, transmitter power determines range 
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Error detection and correction 

 Often part of bus protocol 

 Error detection: ability of receiver to detect errors during transmission 

 Error correction: ability of receiver and transmitter to cooperate to correct 
problem 

 Typically done by acknowledgement/retransmission protocol 

 Bit error: single bit is inverted 

 Burst of bit error: consecutive bits received incorrectly 

 Parity: extra bit sent with word used for error detection 

 Odd parity: data word plus parity bit contains odd number of 1’s 

 Even parity: data word plus parity bit contains even number of 1’s 

 Always detects single bit errors, but not all burst bit errors 

 Checksum: extra word sent with data packet of multiple words 

 e.g., extra word contains XOR sum of all data words in packet 
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Serial protocols: CAN 

 CAN (Controller area network) 

 Protocol for real-time applications  

 Developed by Robert Bosch GmbH 

 Originally for communication among components of cars 

 Applications now using CAN include: 

 elevator controllers, copiers, telescopes, production-line control systems, and 

medical instruments 

 Data transfer rates up to 1 Mbit/s and 11-bit addressing 

 Common devices interfacing with CAN: 

 8051-compatible 8592 processor and standalone CAN controllers 

 Actual physical design of CAN bus not specified in protocol 

 Requires devices to transmit/detect dominant and recessive signals to/from bus 

 e.g., ‘1’ = dominant, ‘0’ = recessive if single data wire used 

 Bus guarantees dominant signal prevails over recessive signal if asserted simultaneously 
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Serial protocols: FireWire 

 FireWire (a.k.a. I-Link, Lynx, IEEE 1394) 

 High-performance serial bus developed by Apple Computer Inc. 

 Designed for interfacing independent electronic components 

 e.g., Desktop, scanner 

 Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing 

 Plug-and-play capabilities 

 Packet-based layered design structure 

 Applications using FireWire include: 

 disk drives, printers, scanners, cameras 

 Capable of supporting a LAN similar to Ethernet 

 64-bit address:  

 10 bits for network ids,  1023 subnetworks 

 6 bits for node ids, each subnetwork can have 63 nodes 

 48 bits for memory address, each node can have 281 terabytes of distinct locations 
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Serial protocols: USB 

 USB (Universal Serial Bus) 

 Easier connection between PC and monitors, printers, digital speakers, modems, 

scanners, digital cameras, joysticks, multimedia game equipment 

 2 data rates: 

 12 Mbps for increased bandwidth devices 

 1.5 Mbps for lower-speed devices (joysticks, game pads) 

 Tiered star topology can be used 

 One USB device (hub) connected to PC 

 hub can be embedded in devices like monitor, printer, or keyboard or can be standalone 

 Multiple USB devices can be connected to hub 

 Up to 127 devices can be connected like this 

 USB host controller  

 Manages and controls bandwidth and driver software required by each peripheral 

 Dynamically allocates power downstream according to devices 

connected/disconnected 
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Parallel protocols: PCI Bus 

 PCI Bus (Peripheral Component Interconnect) 

 High performance bus originated at Intel in the early 1990’s 

 Standard adopted by industry and administered by PCISIG (PCI Special Interest 

Group) 

 Interconnects chips, expansion boards, processor memory subsystems 

 Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing 

 Later extended to 64-bit while maintaining compatibility with 32-bit schemes 

 Synchronous bus architecture 

 Multiplexed data/address lines 
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Parallel protocols: ARM Bus 

 ARM Bus 

 Designed and used internally by ARM Corporation 

 Interfaces with ARM line of processors 

 Many IC design companies have own bus protocol 

 Data transfer rate is a function of clock speed 

 If clock speed of bus is X, transfer rate = 16 x X bits/s  

 32-bit addressing 


