

Interfacing

Introduction

 Embedded system functionality aspects

 Processing
 Transformation of data

 Implemented using processors

 Storage
 Retention of data

 Implemented using memory

 Communication
 Transfer of data between processors and memories

 Read/Write a memory

 Read/Write peripheral’register

 Implemented using buses

 Called interfacing

A simple bus

 Wires:

 Uni-directional or bi-directional

 One line may represent multiple wires

 Bus

 Set of wires with a single function

 Address bus, data bus

 Or, entire collection of wires

 Address, data and control

 Associated protocol: rules for

communication

bus structure

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

bus

Ports

 Conducting device on periphery

 Connects bus to processor or memory

 Often referred to as a pin

 Actual pins on periphery of IC package that plug into socket on printed-circuit board

 Sometimes metallic balls instead of pins

 Today, metal “pads” connecting processors and memories within single IC

 Single wire or set of wires with single function

 E.g., 12-wire address port

bus

Processor Memory
rd'/wr

enable

addr[0-11]

data[0-7]

port

Timing Diagrams
5

 Most common method for describing a
communication protocol

 Time proceeds to the right on x-axis

 Control signal: low or high

 May be active low (e.g., go’, /go, or go_L)

 Use terms assert (active) and deassert

 Asserting go’ means go=0

 Data signal: not valid or valid

 Protocol may have subprotocols

 Called bus cycle, e.g., read and write

 Each may be several clock cycles

 Read example

 rd’/wr set low,address placed on addr for at
least tsetup time before enable asserted, enable
triggers memory to place data on data wires
by time tread

write protocol

rd'/wr

enable

addr

data

tsetup twrite

read protocol

rd'/wr

enable

addr

data

tsetup tread

Basic protocol concepts:

Master Servant req

ack

req

data

Master Servant

data

req

data

taccess

req

data

ack

1. Master asserts req to receive data

2. Servant puts data on bus within time taccess

1

2

3

4

3. Master receives data and deasserts req

4. Servant ready for next request

1

2

3

4

1. Master asserts req to receive data

2. Servant puts data on bus and asserts ack

3. Master receives data and deasserts req

4. Servant ready for next request

Strobe protocol Handshake protocol

Basic protocol concepts

 Actor: master initiates, servant (slave) respond

 Direction: sender, receiver

 Addresses: special kind of data

 Specifies a location in memory, a peripheral, or a register within a peripheral

 Time multiplexing

 Share a single set of wires for multiple pieces of data

 Saves wires at expense of time

data serializing address/data muxing

Master Servant req

data(8)

data(15:0) data(15:0)

mux demux

Master Servant req

addr/data

req

addr/data

addr data

mux demux

addr data

req

data 15:8 7:0 addr data

Time-multiplexed data transfer

A strobe/handshake compromise
8

Fast-response case

req

data

wait

1 3

4

1. Master asserts req to receive data

2. Servant puts data on bus within time taccess

3. Master receives data and deasserts req

4. Servant ready for next request

2

Slow-response case

Master Servant req

wait

data

req

data

wait

1

3

4

1. Master asserts req to receive data

2. Servant can't put data within taccess, asserts wait ack

3. Servant puts data on bus and deasserts wait

4. Master receives data and deasserts req

2

taccess taccess

5. Servant ready for next request

5

 (wait line is unused)

ISA bus protocol – memory access
9

 ISA: Industry Standard Architecture

 Common in 80x86’s

 Features

 20-bit address

 Compromise strobe/handshake control

 4 cycles default, Unless CHRDY deasserted –

resulting in additional wait cycles (up to 6)

Microprocessor Memory I/O Device

ISA bus

ISA bus protocol – memory access

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMW

CHRDY

C1 C2 WAIT C3 C4

 DATA

ADDRESS

memory-write bus cycle

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3 C4

DATA

memory-read bus cycle

I/O devices

© 2000 Morgan Kaufman Overheads for Computers as Components

 Usually includes some non-digital component.

 Typical digital interface to CPU:

CPU

status

reg

data

reg

m
ec

h
an

is
m

 Processor talks to both memory and peripherals
using same bus – two ways to talk to peripherals

 Memory-mapped I/O

 Peripheral registers occupy addresses in same address
space as memory

 e.g., Bus has 16-bit address

 lower 32K addresses may correspond to memory

 upper 32k addresses may correspond to peripherals

Types of bus-based I/O:

memory-mapped I/O and standard I/O

Memory Mapped I/O

Single Memory & I/O Bus

No Separate I/O Instructions

CPU

Interface Interface

Peripheral Peripheral

Memory

ROM

RAM

I/O

Types of bus-based I/O:

memory-mapped I/O and standard I/O

 Standard I/O (I/O-mapped I/O)

 Additional pin (M/IO) on bus indicates whether a memory or
peripheral access

 e.g., Bus has 16-bit address

 all 64K addresses correspond to memory when M/IO set to 0

 all 64K addresses correspond to peripherals when M/IO set to 1

Standard I/O (I/O-mapped I/O)

Single Memory & I/O Bus
Separate I/O Instructions

CPU

Interface Interface

Peripheral Peripheral

Memory

ROM

RAM

I/O

Memory-mapped I/O vs. Standard

I/O

 Memory-mapped I/O
 Requires no special instructions

 Assembly instructions involving memory like MOV and ADD work with
peripherals as well

 Standard I/O requires special instructions (e.g., IN, OUT) to move data
between peripheral registers and memory

 Standard I/O

 No loss of memory addresses to peripherals

 Special-purpose I/O instructions

 Intel x86 provides in, out instructions.
 (Es. IN AL, port e OUT port, AL with port= interface address)

 Simpler address decoding logic in peripherals possible
 When number of peripherals much smaller than address space then high-

order address bits can be ignored
 smaller and/or faster comparators

Intel x86 Standard I/O

LPT Connection Pin I/O Direction Register Address
1 Output 0th bit of register #2

 2-9 Output 0th bit of register #0

14,16,17 Output 1,2,3th bit of register #2

10,11,12,13,15 Input 6,7,5,4,3th bit of register #1

PC Parallel port

Pin 13

Pin 2

Switch

LED

LPT address = 3BCh

18

Intel x86 Standard I/O

; This program consists of a sub-routine that reads the state of the input pin,

determining the on/off state of our switch and asserts the output pin, turning

the LED on/off accordingly

.386

CheckPort proc

 push ax ; save the content

 push dx ; save the content

 mov dx, 3BCh + 1 ; base + 1 for register #1

 in al, dx ; read register #1

 and al, 10h ; mask out all but bit # 4

 cmp al, 0 ; is it 0?

 jne SwitchOn ; if not, we need to turn the LED on

Intel x86 Standard I/O

SwitchOff:

 mov dx, 3BCh + 0 ; base + 0 for register #0

 in al, dx ; read the current state of the port

 and al, feh ; clear first bit (masking)

 out dx, al ; write it out to the port

 jmp Done ; we are done

SwitchOn:

 mov dx, 3BCh + 0 ; base + 0 for register #0

 in al, dx ; read the current state of the port

 or al, 01h ; set first bit (masking)

 out dx, al ; write it out to the port

Done: pop dx ; restore the content

 pop ax ; restore the content

CheckPort endp

ARM memory-mapped I/O

 Define location for device:

DEV1 EQU 0x1000

 Read/write code:

LDR r1,#DEV1 ; set up device adrs

LDR r0,[r1] ; read DEV1

LDR r0,#8 ; set up value to write

STR r0,[r1] ; write value to device

ISA bus

 ISA supports standard I/O

 /IOR distinct from /MEMR for

peripheral read

 /IOW used for writes

 16-bit address space for I/O vs.

20-bit address space for

memory

 Otherwise very similar to

memory protocol

CYCLE

CLOCK

D[7-0]

A[15-0]

ALE

/IOR

CHRDY

 C1 C2 WAIT C3 C4

DATA

ADDRESS

ISA I/O bus read protocol

Microprocessor Memory I/O Device

ISA bus

ADDRESS

CYCLE

CLOCK

D[7-0]

A[19-0]

ALE

/MEMR

CHRDY

C1 C2 WAIT C3 C4

DATA

ISA memory-read bus cycle

A basic memory protocol

 Interfacing an 8051 to external memory

 Ports P0 and P2 support port-based I/O when 8051 internal memory
being used

 Those ports serve as data/address buses when external memory is being
used

 16-bit address and 8-bit data are time multiplexed; low 8-bits of address
must therefore be latched with aid of ALE signal

P0

P2

Q

ALE

/RD

Adr. 7..0

Adr. 15…8

Adr. 7…0

Data

8051

74373

P0

HM6264

D Q

8

P2

ALE G

A<0...15>

D<0...7>

/OE

/WE

/CS

/WR

/RD

/CS1

/PSEN

CS2

27C256

/CS

A<0...14>

D<0...7>

/OE

23

Microprocessor interfacing:

interrupts

 Suppose a peripheral intermittently receives data,
which must be serviced by the processor

 The processor can poll the peripheral regularly to see if
data has arrived – wasteful

 The peripheral can interrupt the processor when it has
data

 Requires an extra pin or pins: Int

 If Int is 1, processor suspends current program, jumps to
an Interrupt Service Routine, or ISR

 Known as interrupt-driven I/O

 Essentially, “polling” of the interrupt pin is built-into the
hardware, so no extra time!

Sistema di interruzione

 La richiesta di interruzione di un dispositivo di I/O è

asincrona rispetto all’esecuzione delle istruzioni

• Non è associata ad alcuna istruzione e può essere attivata

durante l’esecuzione di ogni istruzione

• Viene valutata solo alla fine dell’esecuzione di ogni istruzione

Fetch

Decode

Execute

IRQ=1
V F

Routine di

servizio

Funzioni del sistema di interruzione

F1. Deve garantire che una interruzione non provochi

 interferenze sul programma interrotto.

F2. È necessario che il sistema di interruzione

riconosca il dispositivo interrompente

F3. Deve provvedere alla gestione delle priorità

delle richieste di interruzioni

Cambio di contesto

…

add

sub

and

…

…

store

….

programma

utente

routine di

servizio

Memoria

(1) Interruzione

(2) Salvataggio contesto

(3) PC=Indirizzo routine

(4) Esecuzione routine

(5) Ripristino contesto

Salvataggio del contesto

Contesto: Program Counter (PC), Registro di Stato (SR),
 Registri di uso generale

PC e SR devono essere salvati via hardware.

 Esempio:

• MEM[SP]=SR; SP--;

• MEM[SP]=PC; SP--;

Gli altri registri possono essere salvati via software

• Vengono salvati solo i registri che verranno utilizzati.

• Questo compito è demandato alla routine di servizio che lo
svolge nel suo preambolo.

Salvataggio del contesto

 Il salvataggio del contesto deve essere non

interrompibile per evitare situazioni anomale

• Il processore viene dotato di un flag IE indicante la

interrompibilità del processore.

• Nel momento in cui viene accettata la richiesta di

interruzione IE viene resettato e il processore diventa

non interrompibile

• Per rendere nuovamente interrompibile il processore

bisogna usare un’apposita istruzione

Un sistema di interruzione

 Quando il dispositivo è pronto, pone STATUS=1

 Se IM=1 e le interruzioni sono abilitate (IE=1) viene
servita la richiesta di interruzione (al termine
dell’istruzione corrente).

• Viene posto IE=0

• Viene salvato il contesto

• PC=Indirizzo della Routine di servizio

Status

IM

Interfaccia

IE

CPU

IRQ INT Controllo

IM=Interrupt Mask

Ripristino del contesto

 Via software, nell’epilogo della routine di servizio,
vengono ripristinati i valori dei registri salvati nello
stack (POP)

 L’uscita dalla routine di servizio avviene mediante
un’apposita istruzione di ritorno da interruzione (RTI)
che ripristina la parte di contesto salvata via hardware

 Esempio

• SR=MEM[SP]; SP++;

• PC=MEM[SP]; SP++;

 In alcuni processori la RTI riabilita anche il flip flop IE
(IE=1), in altri è necessario utilizzare un’apposita
istruzione;

Microprocessor interfacing: interrupts

 What is the address of the Interrupt Service Routine?

 Fixed interrupt

 Address built into microprocessor, cannot be changed

 Either ISR stored at address or a jump to actual ISR stored if

not enough bytes available

 Multiple Int pins to support multiple peripherals or one pin

and polling of the peripherals

 Vectored interrupt

 Peripheral must provide the address

 Common when microprocessor has multiple peripherals

connected by a system bus

 Compromise: interrupt address table

Interrupt-driven I/O using fixed ISR

location
32

μP

P1 P2

System bus

Int

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

Interrupt-driven I/O using fixed ISR

location

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request

servicing by the

microprocessor. 3: After completing instruction at 100, μP

sees Int asserted, saves the PC’s value of

100, and sets PC to the ISR fixed location

of 16.

4(a): The ISR reads data from 0x8000,

modifies the data, and writes the resulting

data to 0x8001.

5: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

4(b): After being read, P1 de-

asserts Int.

T
im

e

Interrupt-driven I/O using vectored

interrupt
34

μP

P1 P2

System bus

Data memory

0x8000 0x8001

16: MOV R0, 0x8000

17: # modifies R0

18: MOV 0x8001, R0

19: RETI # ISR return

ISR

100:

101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Int
Inta

16

Interrupt-driven I/O using vectored

interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a

register with address 0x8000.

2: P1 asserts Int to request servicing

by the microprocessor. 3: After completing instruction at 100, μP sees Int

asserted, saves the PC’s value of 100, and asserts

Inta.

5(a): μP jumps to the address on the bus (16).

The ISR there reads data from 0x8000, modifies

the data, and writes the resulting data to 0x8001.

6: The ISR returns, thus restoring PC to

100+1=101, where μP resumes executing.

5(b): After being read, P1 deasserts

Int.

T
im

e

4: P1 detects Inta and puts interrupt

address vector 16 on the data bus.

Interrupt address table

 Compromise between fixed and vectored interrupts

 One interrupt pin

 Table in memory holding ISR addresses (maybe 256

words)

 Peripheral doesn’t provide ISR address, but rather

index into table

 Fewer bits are sent by the peripheral

 Can move ISR location without changing peripheral

Riconoscimento mediante vettore delle

interruzioni

 Nell’interfaccia è presente un registro in cui è memorizzato il codice

identificativo del dispositivo (INV).

 In seguito alla richiesta di interruzione IRQ=1, se il processore è

interrompibile (IE=1), attiva in risposta il segnale IACK.

 Il codice identificativo viene inviato sul bus dati in risposta al segnale IACK

generato dal processore.

Status

IM

Interfaccia

IE

CPU

IRQ INTR Controllo

INV

IACK

Riconoscimento mediante vettore delle

interruzioni

 In memoria è presente una tabella, Interrupt

Vector Table (IVT), che contiene gli indirizzi

delle routine di servizio dei dispositivi.

 Il codice inviato dal dispositivo di I/O,

Interrupt Vector Number (IVN), rappresenta

l’indice della tabella corrispondente alla

routine di servizio.

 La IVT di norma è memorizzata a partire

dalle prime posizioni della memoria in modo

da codificare l’IVN con pochi bit.

 Il riempimento della IVT (o di parte di essa)

viene eseguita ad opera del programmatore

Indirizzo Rsi

Indirizzo RSk

….

….

….

IVN

IVT

RSi

RSk

39

Additional interrupt issues

 Maskable vs. non-maskable interrupts

 Maskable: programmer can set bit that causes processor to ignore
interrupt

 Important when in the middle of time-critical code

 Non-maskable: a separate interrupt pin that can’t be masked

 Typically reserved for drastic situations, like power failure requiring
immediate backup of data to non-volatile memory

 Jump to ISR

 Some microprocessors treat jump same as call of any subroutine

 Complete state saved (PC, registers) – may take hundreds of cycles

 Others only save partial state, like PC only

 Thus, ISR must not modify registers, or else must save them first

 Assembly-language programmer must be aware of which registers stored

Direct memory access

 Buffering
 Temporarily storing data in memory before processing

 Data accumulated in peripherals commonly buffered

 Microprocessor could handle this with ISR
 Storing and restoring microprocessor state inefficient

 Regular program must wait

 DMA controller more efficient
 Separate single-purpose processor

 Microprocessor relinquishes control of system bus to DMA controller

 Microprocessor can meanwhile execute its regular program

 No inefficient storing and restoring state due to ISR call

 Regular program need not wait unless it requires the system bus

 Harvard archictecture – processor can fetch and execute instructions as long as
they don’t access data memory – if they do, processor stalls

Peripheral to memory transfer without

DMA, using vectored interrupt

1(a): μP is executing its main program. 1(b): P1 receives input data in a register

with address 0x8000.

2: P1 asserts Int to request servicing by

the microprocessor.
3: After completing instruction at 100, μP sees Int

asserted, saves the PC’s value of 100, and asserts Inta.

5(a): μP jumps to the address on the bus (16). The ISR

there reads data from 0x8000 and then writes it to

0x0001, which is in memory.

6: The ISR returns, thus restoring PC to 100+1=101,

where μP resumes executing.

5(b): After being read, P1 deasserts Int.

T
im

e

4: P1 detects Inta and puts interrupt

address vector 16 on the data bus.

Peripheral to memory transfer with

DMA (cont’)

1(a): P is executing its main program. It has

already configured the DMA ctrl registers

1(b): P1 receives input data in a register with

address 0x8000.

Data memory μP

DMA ctrl P1

System bus

0x8000 101:

instruction

instruction

...

Main program
...

Program memory

PC

100

Dreq

Dack

0x0000 0x0001

100:

No ISR needed!

0x0001

0x8000

ack

req

Peripheral to memory transfer with

DMA

1(a): μP is executing its main program.

It has already configured the DMA ctrl

registers.

1(b): P1 receives input

data in a register with

address 0x8000.

2: P1 asserts req to request

servicing by DMA ctrl.

7(b): P1 de-asserts req.

T
im

e

3: DMA ctrl asserts Dreq

to request control of

system bus.

4: After executing instruction 100, μP

sees Dreq asserted, releases the system

bus, asserts Dack, and resumes

execution. μP stalls only if it needs the

system bus to continue executing.
5: (a) DMA ctrl asserts

ack (b) reads data from

0x8000 and (b) writes that

data to 0x0001.

6:. DMA de-asserts Dreq

and ack completing

handshake with P1.
7(a): μP de-asserts Dack and resumes

control of the bus.

Arbitration: Priority arbiter

 Consider the situation where multiple peripherals request service from single
resource (e.g., microprocessor, DMA controller) simultaneously - which gets
serviced first?

 Priority arbiter

 Single-purpose processor

 Peripherals make requests to arbiter, arbiter makes requests to resource

 Arbiter connected to system bus for configuration only

Micro-

processor

Priority

arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

Arbitration using a priority arbiter
45

1. 1. Microprocessor is executing its program.

2. 2. Peripheral1 needs servicing so asserts Ireq1. Peripheral2 also needs servicing so asserts Ireq2.

3. 3. Priority arbiter sees at least one Ireq input asserted, so asserts Int.

4. 4. Microprocessor stops executing its program and stores its state.

5. 5. Microprocessor asserts Inta.

6. 6. Priority arbiter asserts Iack1 to acknowledge Peripheral1.

7. 7. Peripheral1 puts its interrupt address vector on the system bus

8. 8. Microprocessor jumps to the address of ISR read from data bus, ISR executes and returns(and

completes handshake with arbiter).

9. 9. Microprocessor resumes executing its program.

Micro-

processor

Priority

arbiter

Peripheral1

System bus

Int
3

5
7

Inta
Peripheral2

Ireq1

Iack2

Iack1

Ireq2

2 2

6

Arbitration: Priority arbiter
46

 Types of priority

 Fixed priority

 each peripheral has unique rank

 highest rank chosen first with simultaneous requests

 preferred when clear difference in rank between peripherals

 Rotating priority (round-robin)

 priority changed based on history of servicing

 better distribution of servicing especially among peripherals with

similar priority demands

Arbitration: Daisy-chain arbitration
47

 Arbitration done by peripherals
 Built into peripheral or external logic added

 req input and ack output added to each peripheral

 Peripherals connected to each other in daisy-chain manner
 One peripheral connected to resource, all others connected “upstream”

 Peripheral’s req flows “downstream” to resource, resource’s ack flows
“upstream” to requesting peripheral

 Closest peripheral has highest priority

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Arbitration: Daisy-chain arbitration
48

 Pros/cons

 Easy to add/remove peripheral - no system redesign needed

 Does not support rotating priority

 One broken peripheral can cause loss of access to other

peripherals

P
System bus

Int

Inta

Peripheral1

Ack_in Ack_out

Req_out Req_in

Peripheral2

Ack_in Ack_out

Req_out Req_in

Daisy-chain aware peripherals

0

Micro-

processor

Priority

arbiter

Peripheral

1

System bus

Int

Inta
Peripheral

2

Ireq1

Iack2

Iack1

Ireq2

Intel 8237 DMA controller
49

Intel 8237 D[7..0]

A[19..0]

ALE

MEMR

MEMW

IOR

IOW

HLDA

HRQ

REQ 0

ACK 0

REQ 1

ACK 1

REQ 2

ACK 2

REQ 3

ACK 3

D[7..0] These wires are connected to the system bus (ISA) and are used by the

microprocessor to write to the internal registers of the 8237.

A[19..0] These wires are connected to the system bus (ISA) and are used by the DMA to

issue the memory location where the transferred data is to be written to. The 8237

is also addressed by the micro-processor through the lower bits of these address

lines.

ALE* This is the address latch enable signal. The 8237 use this signal when driving the

system bus (ISA).

MEMR* This is the memory write signal issued by the 8237 when driving the system bus

(ISA).

MEMW* This is the memory read signal issued by the 8237 when driving the system bus

(ISA).

IOR* This is the I/O device read signal issued by the 8237 when driving the system bus

(ISA) in order to read a byte from an I/O device

IOW* This is the I/O device write signal issued by the 8237 when driving the system bus

(ISA) in order to write a byte to an I/O device.

HLDA This signal (hold acknowledge) is asserted by the microprocessor to signal that it

has relinquished the system bus (ISA).

HRQ This signal (hold request) is asserted by the 8237 to signal to the microprocessor a

request to relinquish the system bus (ISA).

REQ 0,1,2,3 An attached device to one of these channels asserts this signal to request a DMA

transfer.

ACK 0,1,2,3 The 8237 asserts this signal to grant a DMA transfer to an attached device to one of

these channels.

*See the ISA bus description in this chapter for complete details.

Multilevel bus architectures

 A microprocessor-based embedded system can have numerous

types of communications

 High speed communications between processor and memory

 Less frequent communications between processors and its

peripherals can require less speed

 Don’t want one bus for all communication

– Peripherals would need high-speed, processor-specific bus interface

• excess gates, power consumption, and cost; less portable

– Too many peripherals slows down bus

Multilevel bus architectures

 Processor-local bus

 High speed, wide, most frequent
communication

 Connects microprocessor, cache, memory
controllers, etc.

 Peripheral bus

 Lower speed, narrower, less frequent
communication

 Typically industry standard bus (ISA, PCI) for
portability

 Bridge
 Single-purpose processor converts communication

between busses

Processor-local bus

Micro-

processor

Cache Memory

controller

DMA

controller

Bridge Peripheral Peripheral Peripheral

Peripheral bus

Advanced communication principles

 Layering

 Break complexity of communication protocol into pieces easier to design and

understand

 Lower levels provide services to higher level

 Lower level might work with bits while higher level might work with packets of data

 Physical layer

 Lowest level in hierarchy

 Medium to carry data from one actor (device or node) to another

 Parallel communication

 Physical layer capable of transporting multiple bits of data

 Serial communication

 Physical layer transports one bit of data at a time

 Wireless communication

 No physical connection needed for transport at physical layer

Parallel communication

 Multiple data, control, and possibly power wires

 One bit per wire

 High data throughput with short distances

 Typically used when connecting devices on same IC or same

circuit board

 Bus must be kept short

 long parallel wires result in high capacitance values which requires more time

to charge/discharge

 Data misalignment between wires increases as length increases

 Higher cost, bulky

54

Serial communication

 Single data wire, possibly also control and power wires

 Words transmitted one bit at a time

 Higher data throughput with long distances

 Less average capacitance, so more bits per unit of time

 Cheaper, less bulky

 More complex interfacing logic and communication protocol

 Sender needs to decompose word into bits

 Receiver needs to recompose bits into word

 Control signals often sent on same wire as data increasing protocol

complexity

55

Wireless communication

 Infrared (IR)

 Electronic wave frequencies just below visible light spectrum

 Diode emits infrared light to generate signal

 Infrared transistor detects signal, conducts when exposed to infrared

light

 Cheap to build

 Need line of sight, limited range

 Radio frequency (RF)

 Electromagnetic wave frequencies in radio spectrum

 Analog circuitry and antenna needed on both sides of transmission

 Line of sight not needed, transmitter power determines range

56

Error detection and correction

 Often part of bus protocol

 Error detection: ability of receiver to detect errors during transmission

 Error correction: ability of receiver and transmitter to cooperate to correct
problem

 Typically done by acknowledgement/retransmission protocol

 Bit error: single bit is inverted

 Burst of bit error: consecutive bits received incorrectly

 Parity: extra bit sent with word used for error detection

 Odd parity: data word plus parity bit contains odd number of 1’s

 Even parity: data word plus parity bit contains even number of 1’s

 Always detects single bit errors, but not all burst bit errors

 Checksum: extra word sent with data packet of multiple words

 e.g., extra word contains XOR sum of all data words in packet

57

Serial protocols: CAN

 CAN (Controller area network)

 Protocol for real-time applications

 Developed by Robert Bosch GmbH

 Originally for communication among components of cars

 Applications now using CAN include:

 elevator controllers, copiers, telescopes, production-line control systems, and

medical instruments

 Data transfer rates up to 1 Mbit/s and 11-bit addressing

 Common devices interfacing with CAN:

 8051-compatible 8592 processor and standalone CAN controllers

 Actual physical design of CAN bus not specified in protocol

 Requires devices to transmit/detect dominant and recessive signals to/from bus

 e.g., ‘1’ = dominant, ‘0’ = recessive if single data wire used

 Bus guarantees dominant signal prevails over recessive signal if asserted simultaneously

58

Serial protocols: FireWire

 FireWire (a.k.a. I-Link, Lynx, IEEE 1394)

 High-performance serial bus developed by Apple Computer Inc.

 Designed for interfacing independent electronic components

 e.g., Desktop, scanner

 Data transfer rates from 12.5 to 400 Mbits/s, 64-bit addressing

 Plug-and-play capabilities

 Packet-based layered design structure

 Applications using FireWire include:

 disk drives, printers, scanners, cameras

 Capable of supporting a LAN similar to Ethernet

 64-bit address:

 10 bits for network ids, 1023 subnetworks

 6 bits for node ids, each subnetwork can have 63 nodes

 48 bits for memory address, each node can have 281 terabytes of distinct locations

59

Serial protocols: USB

 USB (Universal Serial Bus)

 Easier connection between PC and monitors, printers, digital speakers, modems,

scanners, digital cameras, joysticks, multimedia game equipment

 2 data rates:

 12 Mbps for increased bandwidth devices

 1.5 Mbps for lower-speed devices (joysticks, game pads)

 Tiered star topology can be used

 One USB device (hub) connected to PC

 hub can be embedded in devices like monitor, printer, or keyboard or can be standalone

 Multiple USB devices can be connected to hub

 Up to 127 devices can be connected like this

 USB host controller

 Manages and controls bandwidth and driver software required by each peripheral

 Dynamically allocates power downstream according to devices

connected/disconnected

60

Parallel protocols: PCI Bus

 PCI Bus (Peripheral Component Interconnect)

 High performance bus originated at Intel in the early 1990’s

 Standard adopted by industry and administered by PCISIG (PCI Special Interest

Group)

 Interconnects chips, expansion boards, processor memory subsystems

 Data transfer rates of 127.2 to 508.6 Mbits/s and 32-bit addressing

 Later extended to 64-bit while maintaining compatibility with 32-bit schemes

 Synchronous bus architecture

 Multiplexed data/address lines

61

Parallel protocols: ARM Bus

 ARM Bus

 Designed and used internally by ARM Corporation

 Interfaces with ARM line of processors

 Many IC design companies have own bus protocol

 Data transfer rate is a function of clock speed

 If clock speed of bus is X, transfer rate = 16 x X bits/s

 32-bit addressing

