Iterative Data-flow Analysis

Data Flow Analysis

- Definition:
 - Data-flow analysis is a collection of techniques for compile-time reasoning about the run-time flow of values

- Global data flow analysis
 - Problems are trivial within a basic block
 - Works on control flow graphs
 - Collects information needed for code generation and optimization
 - Global register allocation, global (partial) redundancy elimination, copy propagation, etc.
DATA FLOW ANALYSIS

- Basic idea
 - Setting up and solving systems of equations that relate information at various points in a program
 - Iterative algorithms
 - Desired result is usually *meet over all paths* solution
 - “What is true on every path from the entry?”
 - “Can this happen on any path from the entry?”

ITERATIVE ALGORITHMS

- First, compute some local information within individual basic blocks
- Then, propagate local information along control flow edges
 - IN(B): some property on entry to basic block B
 - OUT(B): some property on exit from basic block B
 - Need to iterate until no changes

```plaintext
while change do
    change = false
    for each basic block
        apply equations updating IN or OUT
        if IN/OUT changes, set change to true
    end
end
```
DATA FLOW ANALYSIS

- Available expressions
- Reachability
- Liveness

- Dataflow analysis in general
 - Does it halt?
 - Does it produce the desired answer?
 - How fast does it converge?

COMPUTING AVAILABLE EXPRESSIONS

- For each block b
 - $Exprkill(b)$: set of expression killed in b
 - $DEExpr(b)$: set of downward exposed expressions
 - $AVAIL(b)$: set of expressions available on entry to b

$$AVAIL(b) = \bigcap_{x \in \text{pred}(b)} (DEExpr(x) \cup (AVAIL(x) - Exprkill(x)))$$

- $AVAIL(b_0) = \emptyset$

- This system of simultaneous equations forms a data-flow problem
- Solve it with a data-flow algorithm
Iterative Algorithm for AVAIL

$$\text{AVAIL}(b_0) = \emptyset$$

for i = 1 to k

$$\text{AVAIL}(b_i) = \text{set of all expressions}$$

changed = true

while (changed)

changed = false

for i = 0 to k

OldValue = AVAIL(b_i)

$$\text{AVAIL}(b_i) = \bigcap_{x \in \text{pred}(b_i)} (\text{DEExpr}(x) \cup (\text{AVAIL}(x) - \text{Exprkill}(x)))$$

If AVAIL(b_i) <> OldValue then changed = true

A Special Example

- **Initialize**
 - AVAIL(B_1) = AVAIL(B_2) = \emptyset

- **Iteration 1**
 - AVAIL(B_1) = \emptyset
 - AVAIL(B_2)
 - = (DEExpr(B_1) \cup (AVAIL(B_1) - Exprkill(B_1))) \cap (DEExpr(B_2) \cup (AVAIL(B_2) - Exprkill(B_2)))
 - = DEExpr(B_1) \cap DEExpr(B_2)

- However, expressions downward exposed by B_1 and not killed by B_2 should be available at the entry of B_2
A SPECIAL EXAMPLE

- Initialize
 - AVAIL(B₁) = AVAIL(B₂) = ∅

- Iteration 1
 - AVAIL(B₁) = ∅
 - AVAIL(B₂) = DEExpr(B₁) ∩ DEExpr(B₂)
 = {b+1} ∩ {a+1} = ∅

- No changes in AVAIL sets, iteration halts

- But, b+1 is available on entry to B₂!

A SPECIAL EXAMPLE

- Problem: initializing AVAIL to be ∅ is too restrictive
- Initialize
 - AVAIL(B₁) = ∅
 - AVAIL(B₂) = {a+1, b+1}

- Iteration 1
 - AVAIL(B₁) = ∅
 - AVAIL(B₂) = DEExpr(B₁)
 ∩ (DEExpr(B₂) ∪ (AVAIL(B₂) - Exprkill(B₂)))
 = {b+1} ∩ {a+1, b+1} = {b+1}

- Iteration 2
 - AVAIL(B₁) = ∅
 - AVAIL(B₂) = DEExpr(B₁)
 ∩ (DEExpr(B₂) ∪ (AVAIL(B₂) - Exprkill(B₂)))
 = {b+1} ∩ {a+1, b+1} = {b+1}

- Halts and gets the right result!
Iterative Algorithm for AVAIL - 2

\[
\text{AVAIL}_{\text{IN}}(b_0) = \emptyset \\
\text{for } i = 1 \text{ to } k \\
\quad \text{AVAIL}_{\text{IN}}(b_i) = \text{set of all expressions} \\
\text{changed} = \text{true} \\
\text{while } (\text{changed}) \\
\quad \text{changed} = \text{false} \\
\quad \text{for } i = 0 \text{ to } k \\
\quad \quad \text{OldValue} = \text{AVAIL}_{\text{IN}}(b_i) \\
\quad \quad \text{AVAIL}_{\text{IN}}(b_i) = \bigcap_{x \in \text{pred}(b_i)} (\text{AVAIL}_{\text{OUT}}(x)) \\
\quad \quad \text{AVAIL}_{\text{OUT}}(b_i) = \text{DEExpr}(b_i) \bigcup (\text{AVAIL}_{\text{IN}}(b_i) - \text{ExprKill}(b_i)) \\
\quad \quad \text{If } \text{AVAIL}_{\text{IN}}(b_i) \neq \text{OldValue} \text{ then } \text{changed} = \text{true}
\]

Data-flow Analysis Algorithm

- What can be generalized from AVAIL calculation?
 - Local information collected within basic blocks
 - AVAIL: DEExpr, ExprKill
 - Propagate information along CFG edges
 - AVAIL: ... from entry point to current point ...
 - Forward propagation: predecessor\(\rightarrow\)successor
 - Join nodes: how to deal with multiple predecessors
 - Initialization
 - AVAIL: entry node = empty set, other nodes = universal set
- Two more examples: REACH, LIVE
Reachability

- A *definition* of a variable x is a statement that may assign a value to x.

- A definition may *reach* a program point p if there exists some path from the point immediately following the definition to p such that the assignment is not killed along that path.
 - A definition of a variable x is *killed* if there is any other definition of x anywhere along the path.

- Concept: relationship between definitions and uses.

What blocks do definitions $d2$ and $d4$ reach?

![Diagram](image_url)
Reasoning about Basic Blocks

Effect of single statement: \(a = b \ op \ c \)
- Uses variables \{b,c\}
- Kills all definitions of \{a\}
- Generates new definition (i.e. assigns a value) of \{a\}

Local Analysis:
- Analyze the effect of each instruction
- Compose these effects to derive information about the entire block

Reachability Analysis: Step 1

- For each block, compute local (block level) information
 - \(\text{DEDef}(B) \): the set of downward-exposed definitions in \(B \)
 - Those for which the defined name is not subsequently redefined by the exit from \(B \)
 - \(\text{DEFKill}(B) \): the set of definitions that are obscured by a definition of the same name in \(B \)
 - Also consider definition points outside \(B \)
- This information does not take control flow between blocks into account
EXAMPLE

Definition of a block B:
- \(d_1 \ i = m - 1 \)
- \(d_2 \ j = n \)
- \(d_3 \ a = u_1 \)

Definition of a block B2:
- \(d_4 \ i = i + 1 \)
- \(d_5 \ j = j - 1 \)

Definition of a block B3:
- \(d_6 \ a = u_2 \)

Definition of a block B4:
- \(d_7 \ i = u_2 \)

DEFKill need to consider the set of all definition points: \{1,2,3,4,5,6,7\}

REACHABILITY ANALYSIS: STEP 2

- Compute \textit{REACHES} set for each block in a forward direction
 - \(\text{REACHES}(b) \): the set of definitions that reach the entry to a block \(b \)
 - Start with \(\text{REACHES}(n_0) = \emptyset \)
 - \(\text{REACHES}(b) = \bigcup_{x \in \text{pred}(b)} (\text{DEDef}(x) \cup (\text{REACHES}(x) \setminus \text{DEFKill}(x))) \)

- Iterative algorithm: keep computing \text{REACHES} sets until a fixed point is reached
 - Locally defined in \(x \)
 - Propagated into \(x \) and not killed by any definition in \(x \)
Reachability Analysis Equation

- Compute **REACHES** set for each block in a forward direction
 - **REACHES**\((b) \): the set of definitions that reach the entry to a block \(b \)
 - Start with **REACHES**\((n_0) = REACHES(b) = \emptyset \)
 - **REACHES**\((b) = \bigcup_{x \in \text{pred}(b)} OUT(x) \)
 - \(OUT(x) = \text{DEDef}(x) \cup (\text{REACHES}(x) - \text{DEFKill}(x)) \)

 - \(OUT(x) \) is the set of definitions that reach the exit from a block \(x \), which include definitions that are
 - Either generated within the block (\(\text{DEDef}(x) \)), or
 - Reach on entry to \(x \) and not killed by any definition in \(x \) (\(\text{REACHES}(x) - \text{DEFKill}(x) \))

REACHING DEFINITIONS ALGORITHM

Input: Flow graph with \(\text{DEDef} \) and \(\text{DEFKill} \) computed for each block
Output: **REACHES**\((B) \) for each block \(B \)

For each block \(B \) initialize \(\text{REACHES}(B) = \emptyset \)
change = true;
while change do begin
 change = false;
 for each block \(B \) do begin
 oldvalue = \(\text{REACHES}(B) \);
 \(\text{REACHES}(B) = \)
 \(\bigcup_{x \in \text{pred}(B)} (\text{DEDef}(x) \cup (\text{REACHES}(x) - \text{DEFKill}(x))) \)
 if \(\text{REACHES}(B) \neq \text{oldvalue} \) then change = true;
 end
end
Example

\[
\text{REACHES}(B) = \bigcup_{x \in \text{pred}(B)} (\text{DEDef}(x) \cup (\text{REACHES}(x) - \text{DEFKill}(x)))
\]

<table>
<thead>
<tr>
<th>Iter 0</th>
<th>Iter 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>B2</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>B3</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>B4</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th></th>
<th>DE-Def</th>
<th>DEF-Kill</th>
<th>Pred</th>
<th>Iter 0</th>
<th>Iter 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1,2,3</td>
<td>4,5,6,7</td>
<td>-</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>B2</td>
<td>4,5</td>
<td>1,2,7</td>
<td>B1, B4</td>
<td>(\emptyset)</td>
<td>Def(1)+Def(4) = {1,2,3} + {7} = {1,2,3,7}</td>
</tr>
<tr>
<td>B3</td>
<td>6</td>
<td>3</td>
<td>B2</td>
<td>(\emptyset)</td>
<td>Def(2) + (REACHES(2) - Kill(2)) = {4,5} + ((1,2,3,7) - {1,2,7}) = {3,4,5}</td>
</tr>
<tr>
<td>B4</td>
<td>7</td>
<td>1,4</td>
<td>B2, B3</td>
<td>(\emptyset)</td>
<td>(3,4,5) + Def(3) + (REACHES(3)-Kill(3)) = (3,4,5) + (6) + ({3,4,5} - {3}) = {3,4,5,6}</td>
</tr>
</tbody>
</table>

\[
\text{REACHES}(B) = \bigcup_{x \in \text{pred}(B)} (\text{DEDef}(x) \cup (\text{REACHES}(x) - \text{DEFKill}(x)))
\]
Example

<table>
<thead>
<tr>
<th>DE-Def</th>
<th>DEF-Kill</th>
<th>Pred</th>
<th>Iter 0</th>
<th>Iter 1</th>
<th>Iter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1, 2, 3</td>
<td>4, 5, 6, 7</td>
<td>-</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>B2</td>
<td>4, 5</td>
<td>1, 2, 7</td>
<td>B1, B4</td>
<td>Ø</td>
<td>1, 2, 3, 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Def(1)+Def(4)+(REACHES(4)-Kill(4))={1, 2, 3, 7}+{(3, 4, 5, 6)-{1, 4}}={1, 2, 3, 5, 6, 7}</td>
</tr>
<tr>
<td>B3</td>
<td>6</td>
<td>3</td>
<td>B2</td>
<td>Ø</td>
<td>{3, 4, 5}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Def(2) + (REACHES(2) - Kill(2)) = {4, 5}+{(1, 2, 3, 5, 6, 7)-{1, 2, 7}} = {3, 4, 5, 6}</td>
</tr>
<tr>
<td>B4</td>
<td>7</td>
<td>1, 4</td>
<td>B2, B3</td>
<td>Ø</td>
<td>{3, 4, 5, 6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{3, 4, 5, 6}+Def(3)+(REACHES(3)-Kill(3))={3, 4, 5}+{6}+{(3, 4, 5, 6)-{3}}={3, 4, 5, 6}</td>
</tr>
</tbody>
</table>

\[REACHES(B) = \bigcup_{x \in \text{pred}(B)} (\text{DEDef}(x) \cup (\text{REACHES}(x) - \text{DEFKill}(x))) \]

Example

<table>
<thead>
<tr>
<th>DE-Def</th>
<th>DEF-Kill</th>
<th>Pred</th>
<th>Iter 0</th>
<th>Iter 1</th>
<th>Iter 2</th>
<th>Iter 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>1, 2, 3</td>
<td>4, 5, 6, 7</td>
<td>-</td>
<td>Ø</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>B2</td>
<td>4, 5</td>
<td>1, 2, 7</td>
<td>B1, B4</td>
<td>Ø</td>
<td>1, 2, 3, 7</td>
<td>1, 2, 3, 5, 6, 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(1, 2, 3, 7)</td>
<td>(1, 2, 3, 5, 6, 7)</td>
</tr>
<tr>
<td>B3</td>
<td>6</td>
<td>3</td>
<td>B2</td>
<td>Ø</td>
<td>{3, 4, 5}</td>
<td>{3, 4, 5, 6}</td>
</tr>
<tr>
<td>B4</td>
<td>7</td>
<td>1, 4</td>
<td>B2, B3</td>
<td>Ø</td>
<td>{3, 4, 5, 6}</td>
<td>{3, 4, 5, 6}</td>
</tr>
</tbody>
</table>

\[REACHES(B) = \bigcup_{x \in \text{pred}(B)} (\text{DEDef}(x) \cup (\text{REACHES}(x) - \text{DEFKill}(x))) \]

No more changes in REACHES sets, algorithm halts!
Data-flow Problems

- **Examples we have discussed**

<table>
<thead>
<tr>
<th></th>
<th>AVAIL</th>
<th>REACHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Set of expressions</td>
<td>Set of definitions</td>
</tr>
<tr>
<td>Direction</td>
<td>Forward</td>
<td>Forward</td>
</tr>
<tr>
<td>Equation across blocks</td>
<td>$\text{AVAIL}(B) = \bigcap_{x \in \text{pred}(B)} \text{OUT}(X)$</td>
<td>$\text{REACHES}(B) = \bigcup_{x \in \text{pred}(B)} \text{OUT}(X)$</td>
</tr>
<tr>
<td>Equations within blocks</td>
<td>$\text{OUT}(X) = \text{DEExpr}(X) \cup (\text{AVAIL}(X) - \text{ExprKill}(X))$</td>
<td>$\text{OUT}(X) = \text{DEDef}(X) \cup (\text{REACHES}(X) - \text{DEFKill}(X))$</td>
</tr>
<tr>
<td>Initialize</td>
<td>$\text{AVAIL}(B) = E$</td>
<td>$\text{REACHES}(B) = \emptyset$</td>
</tr>
<tr>
<td>Boundary</td>
<td>$\text{AVAIL}(B_0) = \emptyset$</td>
<td>$\text{REACHES}(B_0) = \emptyset$</td>
</tr>
</tbody>
</table>

Live Variable Analysis

- A variable x is **live** at a point p if there is **some** path from p where x is used before it is redefined
 - Want to determine for some variable x and point p whether the value of x could be used along some path starting at p

- Liveness analysis:
 - Identify values alive across blocks
 - Backwards: variables used in a successor block are live variables
 - May – live if used along **some** path starting at p
 - Useful in register allocation and efficient SSA generation
LIVE Variable Analysis

- **To collect:**
 - \(\text{LIVEout}(B) \) - set of variables live on exit from block \(B \)

- **Compute at the local (block) level:**
 - \(\text{VarKill}(B) \) - the set of variables assigned values in \(B \)
 - \(\text{UEVar}(B) \) - the set of upward-exposed variables
 - Variables used in \(B \) prior to any re-definition of that variable

Example

<table>
<thead>
<tr>
<th>Block</th>
<th>VarKill</th>
<th>UEVar</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>{a,b}</td>
<td>{}</td>
</tr>
<tr>
<td>B2</td>
<td>{c,d}</td>
<td>{a,b}</td>
</tr>
<tr>
<td>B3</td>
<td>{d}</td>
<td>{b,d}</td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example relationship diagram:

- \(B_1 \):
 - \(d_1: a := 1 \)
 - \(d_2: b := 2 \)

- \(B_2 \):
 - \(d_3: c := a + b \)
 - \(d_4: d := c - a \)

- \(B_3 \):
 - \(d_5: d := b * d \)

- \(B_4 \):
 - \(d_6: d := a + b \)
 - \(d_7: e := e + 1 \)

- \(B_5 \):
 - \(d_8: b := a + b \)
 - \(d_9: e := e - a \)

- \(B_6 \):
 - \(d_{10}: a := b + d \)
 - \(d_{11}: b := a - d \)
Example

<table>
<thead>
<tr>
<th>Block</th>
<th>VarKill</th>
<th>UEVar</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>(a,b)</td>
<td>{}</td>
</tr>
<tr>
<td>B2</td>
<td>(c,d)</td>
<td>(a,b)</td>
</tr>
<tr>
<td>B3</td>
<td>{d}</td>
<td>(b,d)</td>
</tr>
<tr>
<td>B4</td>
<td>(d,e)</td>
<td>(a,b,e)</td>
</tr>
<tr>
<td>B5</td>
<td>(b,e)</td>
<td>(a,b,c)</td>
</tr>
<tr>
<td>B6</td>
<td>(a,b)</td>
<td>(b,d)</td>
</tr>
</tbody>
</table>

Example

LIVE Variable Analysis

- **Equation**
 - \(\text{LIVEout}(B) \) - variables live on exit from block \(B \):

\[
\text{LIVEout}(n_f) = \text{LIVEout}(B) = \emptyset \\
\text{LIVEout}(B) = \\
\cup_{x \in \text{SUCC}(B)}(\text{UEVar}(x) \cup (\text{LIVEout}(x) \cap \text{VarKill}(x)))
\]
LIVE VARIABLE ANALYSIS

- **Equation**
 - \(\text{LIVEout}(B) \) - variables live on exit from block B:

 \[
 \text{LIVEout}(n_f) = \text{LIVEout}(B) = \emptyset \\
 \text{LIVEout}(B) = \bigcup_{x \in \text{SUCC}(B)} \text{IN}(x)
 \]

 \[
 \text{IN}(x) = \text{UEVar}(x) \cup (\text{LIVEout}(x) \setminus \text{VarKill}(x))
 \]

- **Using the local information, compute iteratively over the CFG**
 - Initially, \(\text{LIVEout}(B) = \emptyset \) for all B
 - Re-evaluate \(\text{LIVEout} \) at each node repeatedly
 - Halts when the information stops changing
EXAMPLE

\[\text{LIVEout}(B) = \bigcup_{x \in \text{SUCC}(B)} (\text{UEVar}(x) \cup (\text{LIVEout}(x) - \text{VarKill}(x))) \]

EXAMPLE

\[\text{LIVEout}(B) = \bigcup_{x \in \text{SUCC}(B)} (\text{UEVar}(x) \cup (\text{LIVEout}(x) - \text{VarKill}(x))) \]
EXAMPLE

<table>
<thead>
<tr>
<th>Block</th>
<th>VarKill</th>
<th>UEVar</th>
<th>SUCC</th>
<th>Iter 0</th>
<th>Iter 1</th>
<th>Iter 2</th>
<th>Iter 3</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>(a,b)</td>
<td>{}</td>
<td>B2</td>
<td>{a,b}</td>
<td>{a,b}</td>
<td>{a,b}</td>
<td>{a,b}</td>
<td>…</td>
</tr>
<tr>
<td>B2</td>
<td>(c,d)</td>
<td>(a,b)</td>
<td>B3, B5</td>
<td>{a,b,c,d}</td>
<td>{a,b,c,d,e}</td>
<td>{a,b,c,d,e}</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>(d)</td>
<td>(b,d)</td>
<td>B4, B5</td>
<td>{a,b,c,e}</td>
<td>{a,b,c,d,e}</td>
<td>{a,b,c,d,e}</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>(d,e)</td>
<td>(a,b,e)</td>
<td>B3</td>
<td>{b,d,a,c,e}</td>
<td>{b,d,a,c,e}</td>
<td>{a,b,c,d,e}</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>(b,e)</td>
<td>(a,b,c)</td>
<td>B2, B6</td>
<td>{a,b,d}</td>
<td>{a,b,d,e}</td>
<td>{a,b,d,e}</td>
<td>…</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td>(a,b)</td>
<td>(b,d)</td>
<td>-</td>
<td>{a,b}</td>
<td>{ }</td>
<td>{ }</td>
<td>{ }</td>
<td>…</td>
</tr>
</tbody>
</table>

- Iteration 4 confirms that we’ve reached a fixed point

\[\text{LIVEout}(B) = \cup_{x \in \text{SUCC}(B)} (\text{UEVar}(x) \cup (\text{LIVEout}(x) - \text{VarKill}(x))) \]

Results

LIVEout(B)

- B1:
 d1: a := 1
 d2: b := 2
 {a,b,c,e}

- B2:
 d3: c := a + b
 d4: d := c - a
 {a,b,c,d,e}

- B3:
 d5: d := b \times d
 {a,b,c,d,e}

- B4:
 d6: d := a + b
 d7: e := e + 1
 {a,b,c,d,e}

- B5:
 d8: b := a + b
 d9: e := c - a
 {a,b,d,e}

- B6:
 d10: a := b * d
 d11: b := a - d
 {a,b,c,d,e}
Types of Dataflow Analysis

- **Forward vs. backward dataflow analysis**
 - **Forward**
 - In a CFG, information is propagated from a basic block B's predecessors to B
 - Example: reachability, available expressions, constant propagation
 - **Backward**
 - In a CFG, information is propagated from a basic block B's successors to B
 - Example: live variable analysis

- **May vs. Must**
 - **Must** – true on **all paths** (set intersection)
 - Example: available expression – expression must be defined and not killed on all path
 - **May** – true on **some path** (set union)
 - Example: live variable analysis – a variable is live if it could be used on some path
DATA FLOW ANALYSIS EXAMPLES

<table>
<thead>
<tr>
<th>Domain</th>
<th>AVAIL</th>
<th>REACHES</th>
<th>LIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set of expressions</td>
<td>Set of definitions</td>
<td>Set of variables</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Forward</td>
<td>Forward</td>
<td>Backward</td>
</tr>
<tr>
<td>Equation across blocks</td>
<td>AVAIL(B) = (\cap_{x \in \text{pred}(B)} \text{OUT}(X))</td>
<td>REACHES(B) = (\cup_{x \in \text{pred}(B)} \text{OUT}(X))</td>
<td>LIVEout(B) = (\cup_{x \in \text{succ}(B)} \text{IN}(X))</td>
</tr>
<tr>
<td>Equation within blocks</td>
<td>(\text{OUT}(X) = \text{DEExpr}(X) \cup (\text{AVAIL}(X) - \text{ExprKill}(X)))</td>
<td>(\text{OUT}(X) = \text{DEDef}(X) \cup (\text{REACHES}(X) - \text{DEFKill}(X)))</td>
<td>(\text{IN}(X) = \text{UEVar}(X) \cup (\text{LIVEout}(X) - \text{VarKill}(X)))</td>
</tr>
<tr>
<td>Initialize</td>
<td>AVAIL(B) = E</td>
<td>REACHES(B) = (\emptyset)</td>
<td>LIVEout(B) = (\emptyset)</td>
</tr>
<tr>
<td>Boundary</td>
<td>AVAIL(B(_0)) = (\emptyset)</td>
<td>REACHES(B(_0)) = (\emptyset)</td>
<td>LIVEout(B(_f)) = (\emptyset)</td>
</tr>
</tbody>
</table>

THEORETICAL FOUNDATIONS

- **Formal model of iterative data-flow analysis**
- **Termination**
 - Does the iterative solver halt?
- **Correctness**
 - Does the iterative solver guarantee the right solution?
- **Speed**
 - How fast does the iterative solver converge?
- **References**
 - Dragon book Ch9.3
FORMAL MODEL

A data flow analysis framework (D, V, ∧, F)
- A direction of the data flow D
 - Forward or backward
- A meet-semi-lattice which includes a domain of values V and a meet operator ∧
- A family F of transfer functions V → V

Example 1: REACH analysis
- D: forward
- V: \(2^{\text{Def}}\), where \(\text{Def}\) is the set of all definitions, ∧: ∪
- For a block \(n\), \(f_n\) describes how information flows within \(n\): \(f_n\) has the form \(f_n(x) = a_n \cup (x - b_n)\)
 - Where \(a_n\) is \(\text{DEDef}(n)\) and \(b_n\) is \(\text{DEKILL}(n)\)

Example 2: LIVE analysis
- D: backwards
- V: \(2^{\text{Var}}\), where \(\text{Var}\) is the set of all variables, ∧: ∪
- For a block \(n\), \(f_n\) describes how information flows within \(n\): \(f_n\) has the form \(f_n(x) = a_n \cup (x - b_n)\)
 - Where \(a_n\) is \(\text{UEVar}(n)\) and \(b_n\) is \(\text{VARKILL}(n)\)

Example 3: AVAIL analysis
- D: forwards
- V: \(2^{\text{Exp}}\), where \(\text{Exp}\) is the set of all expressions, ∧: ∩
- For a block \(n\), \(f_n\) describes how information flows within \(n\): \(f_n\) has the form \(f_n(x) = a_n \cup (x - b_n)\)
 - Where \(a_n\) is \(\text{DEExpr}(n)\) and \(b_n\) is \(\text{EXPRKILL}(n)\)
SCALAR OPTIMIZATIONS

ROADMAP

- Constant propagation
- Copy propagation
- Code motion for loop invariants
- Partial redundancy elimination
CONSTANT PROPAGATION

\[s: x := C \quad //\text{for some constant } C \]

\[u: \ldots := x \]

- If statement \(s \) is the only definition of \(x \) reaching statement \(u \), we can replace \(x \) with constant \(C \)
 - Save a register
 - Enable constant folding and dead code elimination
 - Can potentially remove conditional branches
- What if more than one definition reaches \(u \)?
 - Data-flow analysis across basic blocks
- Replacement is iterative
 - One replacement may trigger more opportunities

USING DATAFLOW EQUATIONS

- \(\text{ConstIn}(b) \): pairs of \(<\text{variable}, \text{value}>\) that the compiler can prove to hold on entry to block \(b \)
 - One \(<\text{variable}, \text{value}>\) for each variable
 - \(<x, C> \in \text{ConstIn}(b)\): variable \(x \) is guaranteed to take a constant value \(C \) on entry to block \(b \)
 - \(<x, \text{NAC}>\): \(x \) is guaranteed not to be a constant
 - \(<x, \text{UNDEF}>\): we know nothing assertive about \(x \)
 - \(\text{ConstIn}(b) = \land \text{ConstOut}(j) \) for block \(j \in \text{Pred}(b) \)
- Meet operation for the pairs
 - \(<x, c> \land <x, c> = <x, c>\)
 - \(<x, c1> \land <x, c2> = <x, \text{NAC}> \) \((c1 \neq c2)\)
 - \(<x, c> \land <x, \text{NAC}> = <x, \text{NAC}>\)
 - \(<x, c> \land <x, \text{UNDEF}> = <x, c>\)
 - \(<x, \text{UNDEF}> \land <x, \text{NAC}> = <x, \text{NAC}>\)
Using Dataflow Equations

- **ConstOut(b):** pairs of \(<\text{variable}, \text{value}>\) on exit from block \(b\)
 - Initialized to be \(\text{ConstIn}(b)\) and modified by processing each statement \(s\) in block \(b\) in order.
 - \(s\) is a simple copy: \(x \leftarrow y\), the value of \(y\) decides \(x\).
 - \(s\) is a computation: \(x \leftarrow y \text{ op } z\), the values of \(y\) and \(z\) decide \(x\):
 - \(<x, c_1 \text{ op } c_2> \in \text{ConstOut} \text{ if } <y, c_1> \text{ and } <z, c_2> \in \text{ConstOut}\)
 - \(<x, \text{NAC}> \in \text{ConstOut} \text{ if either } <y, \text{NAC}> \text{ or } <z, \text{NAC}> \in \text{ConstOut}\)
 - \(<x, \text{UNDEF}> \in \text{ConstOut} \text{ otherwise}\)
 - \(s\) is a function call or assignment via a pointer: \(<x, \text{NAC}> \in \text{ConstOut}\)

- Optimization opportunity exists only for \(x\) s.t. \(<x, C> \in \text{ConstIn}(b)\) for some constant \(C\)

Example

\[
\begin{array}{c}
\{<X,\text{UNDEF}>, <Y,\text{UNDEF}>, \ldots\} \\
X = 2 \\
Y = 3 \\
\{<X,2>,<Y,3>,\ldots\} \\
\{<X,NAC>,<Y,NAC>,\ldots\} \\
Z = X + Y \\
\{<X,NAC>,<Y,NAC>,<Z,NAC>,\ldots\} \\
\end{array}
\]
CONSTANT PROPAGATION w/ SSA

- For statements $x_i := C$, for some constant C, replace all x_i with C
- For $x_i := \phi(C,C,...,C)$, for some constant C, replace statement with $x_i := C$
- Iterate

EXAMPLE: SSA

```plaintext
a := 3
b := 2
f := a + b
g := 5
a := g - b
f <= g
```

```plaintext
f := g + 1
d := 2
```

```plaintext
da := 2
```

```plaintext
d3 = \phi(d2,d1)
a3 = \phi(a2,a1)
f1 := a3 + d3
g1 := 5
```

```plaintext
f1 <= g1
```

```plaintext
f2 := g1 + 1
g1 < a2
```

```plaintext
f3 := \phi(f2,f1)
d2 := 2
```

```plaintext
d2 := 2
```
EXAMPLE: SSA

```
a1 := 3
d1 := 2

\[ d_3 = \phi(d_2, d_1) \]
\[ a_3 = \phi(a_2, a_1) \]
\[ f_1 := a_3 + d_3 \]
\[ g_1 := 5 \]
\[ a_2 := g_1 - d_3 \]
\[ f_1 \leq g_1 \]

\[ f_2 := g_1 + 1 \]
\[ f_3 := \phi(f_2, f_1) \]
\[ d_2 := 2 \]
```

This may continue for a few steps ...

```
a1 := 3
d1 := 2

\[ d_3 = \phi(2, 2) \]
\[ a_3 = \phi(a_2, 3) \]
\[ f_1 := a_3 + d_3 \]
\[ g_1 := 5 \]
\[ a_2 := 5 - d_3 \]
\[ f_1 \leq 5 \]

\[ f_2 := 5 + 1 \]
\[ f_3 := \phi(f_2, f_1) \]
\[ d_2 := 2 \]
```

26
Copy Propagation

- Idea: use v for u wherever possible after the copy statement $u=v$
- Benefits
 - Can create dead code
 - Can enable algebraic simplifications

```
\begin{align*}
b &:= a \\
c &:= 4 \cdot b \\
c &> b \\
d &:= b + 2 \\
e &:= a + b
\end{align*}
```

```
\begin{align*}
b &:= a \\
c &:= 4 \cdot a \\
c &> a \\
d &:= a + 2 \\
e &:= a + a
\end{align*}
```

Using Dataflow Analysis

- Finding copies in blocks can be represented by a dataflow analysis framework similar to the one for constant propagation
 - A pair $<u,v>$ indicates that value is copied from v to u
- Data flow direction?
 - Forward analysis
- Meet operator?
 - $\text{CopyIn}(b) = \cap \text{CopyOut}(j)$ for every predecessor j of b
- Transfer function?
 - $\text{CopyOut}(b)$ is computed from $\text{CopyIn}(b)$ by processing each operations in b
- Similar to constant propagation
Example 1

```
CopyIn(b)
CopyOut(b)

b := a
l := b + 2
c := 4*b
d := c + 2
f := a + b

{<b,a>}
{<b,a>}
{<b,a>}
{<b,a>}
```
Example 2

CopyIn(b)
CopyOut(b)

{<d,c>}
{<d,c>}
{<d,c>,<g,e>}
{<d,c>,<g,e>}
{<d,c>,<g,e>}
{<d,c>,<g,e>}
{<d,c>,<g,e>}
{<d,c>,<g,e>}
{<d,c>,<g,e>}
{<g,e>}
{<d,c>,<g,e>}
{<g,e>}
{<d,c>}
{<d,c>}

Loop Invariants & Code Motion

- A loop invariant expression is a computation whose value does not change as long as control stays in the loop.
- Code motion is the optimization that finds loop invariants and moves them out of the loop.

```plaintext
while (i <= limit - 2) { ... }
⇒
t := limit - 2
while (i <= t) { ... }
```
Part 1: Detecting Loop Invariants

- Mark “invariant” all statements whose operands either are constants or have all reaching definitions outside the loop
 - How to know this?
- Iterate until there are no more “invariants” to mark
 - Iteratively marking all statements whose operands either are constants, have all reaching definitions outside the loop or have only “invariant” reaching definitions

```
L O O P  I N V A R I A N T S

\[ i = 1 \]
\[ i \leq 100 \]
\[ t1 = n + 2 \]
\[ k = i \times t1 \]
\[ j = i \]
\[ j \leq 100 \]
\[ t2 = 100 \times n \]
\[ t3 = 10 \times k \]
\[ t4 = t2 + t3 \]
\[ t5 = t4 + j \]
\[ j = j + 1 \]
```

Loop Invariants

- Inner loop
 - do i = 1, 100
 - do j = i, 100
 - \[a[i,j] = 100 \times n + 10 \times k + j \]
- Outer loop

30
Loop Invariants: SSA

\[i_1 = 1 \]

\[i_2 = \phi(i_1, i_3) \]
\[i_2 \leq 100 \]

\[t_1 = n_1 \]
\[k_1 = i_2 \times t_1 \]
\[i_3 = i_2 + 1 \]

\[t_2 = 100 \times n_1 \]
\[t_3 = 10 \times k_1 \]
\[t_4 = t_2 + t_3 \]
\[t_5 = t_4 + j_2 \]

\[j = j_2 + 1 \]

Part 2: Code Motion

- An invariant statement \(x := y + z \) can sometimes be moved out of the loop
 - Code can be moved just before the header
 - Will dominate the whole loop after code motion
 - Three conditions (following slides)
Condition 1: To move invariant $t := x \text{ op } y$, either the block that containing this invariant must dominate all loop exits, or t must be not live-out of any loop exit.

Violation of Condition 1:

Condition 2: To move invariant $t := x \text{ op } y$, it must be the only definition of t in the loop.

Violation of Condition 2:
Condition 3: To move invariant \(t := x \) or \(y \), no use of \(t \) in the loop is reached by any other definition of \(t \).

Violation of Condition 3

\[
\begin{align*}
x &:= 1 \\
u &< v \\
k &:= x \\
u &:= u + 1 \\
x &:= 2 \\
v &:= v - 1 \\
v &\leq 20
\end{align*}
\]

Assuming \(t_1 \) not live outside the loop-nest, this stmt is invariant and all three

\[
\begin{align*}
i_1 &= 1 \\
t_1 &= n_1 + 2 \\
k_1 &= t_2 \\
j_1 &= j_2 \\
t_2 &= 100 \cdot n_1 \\
t_3 &= 10 \cdot k_1 \\
t_4 &= t_2 + t_3 \\
t_5 &= t_4 + j_2 \\
j_3 &= j_2 + 1
\end{align*}
\]
CODE MOTION EXAMPLE

\begin{align*}
 i_1 &= 1 \\
 t_{10} &= n_1 + 2 \\
 i_2 &= \phi(i_1, j_3) \\
 i_2 &= i_1 \\
 k_1 &= i_2 \cdot t_{10} \\
 j_1 &= i_2 \\
 j_2 &= f(j_1, j_3) \\
 j_2 &= j_1 + 1 \\
 t_{20} &= 100 \cdot n_1 \\
 t_{30} &= 10 \cdot k_1 \\
 t_{40} &= t_{20} + t_{30} \\
 t_{50} &= t_{40} + i_2 \\
 i_3 &= i_2 + 1 \\
 j_3 &= j_2 + 1 \\
 t_{f} &= f(t_{20}, t_{30}) \\
 t_{f} &= t_{50}
\end{align*}

invariant and all conditions met, assuming t2, t3, t4 not live outside the loop-nest

CODE MOTION EXAMPLE

\begin{align*}
 i_1 &= 1 \\
 t_{10} &= n_1 + 2 \\
 i_2 &= \phi(i_1, j_3) \\
 i_2 &= i_1 \\
 k_1 &= i_2 \cdot t_{10} \\
 j_1 &= i_2 \\
 j_2 &= f(j_1, j_3) \\
 j_2 &= j_1 + 1 \\
 t_{20} &= 100 \cdot n_1 \\
 t_{30} &= 10 \cdot k_1 \\
 t_{40} &= t_{20} + t_{30} \\
 t_{50} &= t_{40} + j_2 \\
 i_3 &= i_2 + 1 \\
 j_3 &= j_2 + 1 \\
 t_{f} &= f(t_{20}, t_{30}) \\
 t_{f} &= t_{50}
\end{align*}

invariant and all conditions met
REDUNDANT EXPRESSIONS

- Expression E is redundant at point p if
 - On every path to p, E has been evaluated before reaching p and none of the constituent values of E has been redefined after the evaluation.

- Expression E is *partially redundant* at point p if
 - E is redundant along some but not all paths to p
 - To optimize: insert code to make it fully redundant.

LOOP INVARIANTS

- Loop invariant expressions are partially redundant
 - Available for all loop iterations except for the very first one
- Code motion works by making the expression fully redundant
PARTIAL REDUNDANCY ELIMINATION

- Uses standard data-flow techniques to figure out where to move the code
- Subsumes classical global common sub-expression elimination and code motion of loop invariants
- Used by many optimizing compilers
 - Traditionally applied to lexically equivalent expressions
 - With SSA support, applied to values as well

PARTIAL REDUNDANCY ELIMINATION

- May add a block to deal with *critical edges*
 - Critical edge – edge leading from a block with more than one successor to a block with more than one predecessor
PARTIAL REDUNDANCY ELIMINATION

- Code duplication to deal with redundancy

Can we find a way to deal with redundancy in general??

LAZY CODE MOTION

Redundancy: common expressions, loop invariant expressions, partially redundant expressions

Desirable Properties:
- All redundant computations of expressions that can be eliminated with code duplication are eliminated.
- The optimized program does not perform any computation that is not in the original program execution.
- Expressions are computed at the latest possible time.
LAZY CODE MOTION

- Solve four data-flow problems that reveal the limit of code motion
 - AVAIL: available expressions
 - ANTI: anticipated expression
 - EARLIEST: earliest placement for expressions
 - LATER: expressions that can be postponed

- Compute INSERT and DELETE sets based on the data-flow solutions for each basic block
 - They define how to move expressions between basic blocks

Can we make this better?
Lazy Code Motion

Locally Information

For each block b, compute the local sets:

- **DEExpr**: an expression is downward-exposed (locally generated) if it is computed in b and its operands are not modified after its last computation
- **UEExpr**: an expression is upward-exposed if it is computed in b and its operands are not modified before its first computation
- **NotKilled**: an expression is not killed if none of its operands is modified in b

\[
\begin{align*}
 f &= b + d \\
 a &= b + c \\
 d &= a + e
\end{align*}
\]

DEExpr = \{a + e, b + c\}
UEExpr = \{b + d, b + c\}
NotKilled = \{b + c\}
LOCAL INFORMATION

What do they imply?
- **DEExpr**: \(e \in \text{DEExpr}(b) \Rightarrow \) evaluating \(e \) at the end of \(b \) produces the same result as evaluating it at the original position in \(b \)
- **UEExpr**: \(e \in \text{UEExpr}(b) \Rightarrow \) evaluating \(e \) at the entry of \(b \) produces the same result as evaluating it at the original position in \(b \)
- **NotKilled**: \(e \in \text{NotKilled}(b) \Rightarrow \) evaluating \(e \) at either the start or end of \(b \) produces the same result as evaluating it at the original position

\[
\begin{align*}
f &= b + d \\
a &= b + c \\
d &= a + e
\end{align*}
\]

DEExpr = \{a + e, b + c\}
UEExpr = \{b + d, b + c\}
NotKilled = \{b + c\}

GLOBAL INFORMATION

Availability
- \(\text{AvailIn}(n_0) = \emptyset \)
- \(\text{AvailIn}(b) = \bigcap_{x \in \text{pred}(b)} \text{AvailOut}(x), b \neq n_0 \)
- \(\text{AvailOut}(b) = \text{DEExpr}(b) \cup (\text{AvailIn}(b) \cap \text{NotKilled}(b)) \)
- Initialize \(\text{AvailIn} \) and \(\text{AvailOut} \) to be the set of expressions for all blocks except for the entry block \(n_0 \)

Interpreting Avail sets
- \(e \in \text{AvailOut}(b) \Leftrightarrow \) evaluating \(e \) at end of \(b \) produces the same value for \(e \) as its most recent evaluation, no matter whether the most recent one is inside \(b \) or not
- \(\text{AvailOut} \) tells the compiler how far forward \(e \) can move
GLOBAL INFORMATION

- **Anticipability**
 - Expression e is anticipated at a point p if e is certain to be evaluated along all computation path leaving p before any re-computation of e’s operands
 - AntOut(nf) = Ø
 - AntOut(b) = $\bigcap x \in \text{succ}(b) \text{AntIn}(x)$, $b \neq nf$
 - AntIn(b) = UEExpr(b) \cup (AntOut(b) \cap NotKilled(b))
 - Initialize AntOut to be the set of expressions for all blocks except for the exit block nf

- **Interpreting Ant sets**
 - $e \in \text{AntIn}(b) \iff$ evaluating e at start of b produces the same value for e as evaluating it at the original position (later than start of b) with no additional overhead
 - AntIn tells the compiler how far backward e can move

Example

- **Block**
 - **Not-Killed**
 - **DE-Expr**
 - **UE-Expr**

<table>
<thead>
<tr>
<th>Block</th>
<th>Not-Killed</th>
<th>DE-Expr</th>
<th>UE-Expr</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>(x*y)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>B2</td>
<td>(x*y)</td>
<td>(x*y)</td>
<td>(x*y)</td>
</tr>
<tr>
<td>B3</td>
<td>(x*y)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>B4</td>
<td>(x*y)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>B5</td>
<td>(x*y)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>B6</td>
<td>(x*y)</td>
<td>(x*y)</td>
<td>(x*y)</td>
</tr>
<tr>
<td>B7</td>
<td>(x*y)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>B8</td>
<td>(x*y)</td>
<td>()</td>
<td>()</td>
</tr>
<tr>
<td>B9</td>
<td>(x*y)</td>
<td>(x*y)</td>
<td>(x*y)</td>
</tr>
<tr>
<td>Exit</td>
<td>(x*y)</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>
Example: Avail

\[\mu \text{AvailIn}(b) = \bigcap_{x \in \text{pred}(b)} \mu \text{AvailOut}(x) \]

\[\mu \text{AvailOut}(b) = \text{DEExpr}(b) \cup (\mu \text{AvailIn}(b) \cap \text{NotKilled}(b)) \]

Example: Ant

\[\mu \text{AntOut}(b) = \bigcap_{x \in \text{succ}(b)} \mu \text{AntIn}(x) \]

\[\mu \text{AntIn}(b) = \text{UEExpr}(b) \cup (\mu \text{AntOut}(b) \cap \text{NotKilled}(b)) \]
Example: Avail and Ant

```plaintext
z = a
x > 3

z = x * y
y < 5
z < 7

b = x * y

Interesting spots: Anticipated but not available
```

Lazy Code Motion

- A powerful algorithm
 - Finds different forms of redundancy in a unified framework
 - Subsumes loop invariant code motion and common expression elimination
- Data-flow analysis
 - Composes several simple data-flow analyses to produce a powerful result