Cap. 17

Modi TE e TM in cavi coassiali.

17.1 - Soluzioni dell'equazione di Helmholtz per modi TE e TM - Frequenza di cut-off.

Consideriamo un cavo coassiale: il conduttore interno di raggio a e quello esterno di raggio b.

fig.17.1-1

Scriviamo l'equazione di Helmholtz in coordinate cilindriche, per esempio, consideriamo modi TM, quindi per ${\cal E}_z$

$$\frac{\partial^2 E_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial E_z}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 E_z}{\partial \theta^2} + h^2 E_z = 0$$
(17.1.1)

Al solito, poichè alle coordinate ρ , θ , $z \in \rho$, $\theta + 2\pi$, z corrisponde lo stesso punto, E_z sarà funzione periodica di θ con periodo 2π ; la sviluppiamo quindi in serie di Fourier. Ovviamente il dominio che stiamo considerando è quello compreso fra i due conduttori.

$$E_z = \sum_{n=0}^{\infty} \left[A_n(\rho) \cos n\theta + B_n(\rho) \sin n\theta \right]$$
(17.1.2)

dove $A_n(\rho)$ e $B_n(\rho)$ sono funzioni solo di ρ .

Sostituendo la (17.1.2) nella (17.1.1) avremo:

$$\sum_{n=0}^{\infty} \left[\left(\frac{d^2 A_n}{d\rho^2} + \frac{1}{\rho} \frac{dA_n}{d\rho} - \frac{n^2 A_n}{\rho^2} + h^2 A_n \right) \cos n\theta + \left(\frac{d^2 B_n}{d\rho^2} + \frac{1}{\rho} \frac{dB_n}{d\rho} - \frac{n^2 B_n}{\rho^2} + h^2 B_n \right) \sin n\theta \right] = 0$$
(17.1.3)

Perchè questo sia vero occorre e basta:

$$\frac{d^2 A_n}{d\rho^2} + \frac{1}{\rho} \frac{dA_n}{d\rho} + \left(h^2 - \frac{n^2}{\rho^2}\right) A_n = 0$$
(17.1.4)

$$\frac{d^2 B_n}{d\rho^2} + \frac{1}{\rho} \frac{dB_n}{d\rho} + \left(h^2 - \frac{n^2}{\rho^2}\right) B_n = 0$$
(17.1.5)

Ponendo $x = h\rho$ e dividendo per h^2 nelle (17.1.4) e (17.1.5) si ha:

$$\frac{d^2 A_n}{dx^2} + \frac{1}{x} \frac{dA_n}{dx} + \left(1 - \frac{n^2}{x^2}\right) A_n = 0$$
(17.1.6)

$$\frac{d^2 B_n}{dx^2} + \frac{1}{x} \frac{dB_n}{dx} + \left(1 - \frac{n^2}{x^2}\right) B_n = 0$$
(17.1.7)

Come sappiamo queste equazioni ammettono come soluzioni le funzioni di Bessel di 1^a e di 2^a specie, ciò è accettabile essendo il punto $\rho = 0$ escluso dalla nostra trattazione. Pertanto si ha:

$$A_n = C_n J_n(x) + D_n N_n(x) (17.1.8)$$

$$B_n = E_n J_n(x) + F_n N_n(x)$$
(17.1.9)

Sostituendole nella (17.1.2) si ha:

$$E_z = \sum_{n=0}^{\infty} \left\{ \left[C_n J_n(x) + D_n N_n(x) \right] \cos n\theta + \left[E_n J_n(x) + F_n N_n(x) \right] \sin n\theta \right\}$$
(17.1.10)

Le condizioni al contorno sono: $E_z = 0$ per $\rho = a$ e per $\rho = b$, quindi deve essere:

$$C_n J_n(ha) + D_n N_n(ha) = 0 (17.1.11)$$

$$E_n J_n(ha) + F_n N_n(ha) = 0 (17.1.12)$$

$$C_n J_n(hb) + D_n N_n(hb) = 0 (17.1.13)$$

$$E_n J_n(hb) + F_n N_n(hb) = 0 (17.1.14)$$

e, poichè sono, a due a due, l'una combinazione lineare dell'altra si riducono a:

$$C_n J_n(ha) + D_n N_n(ha) = 0 (17.1.11)$$

$$C_n J_n(hb) + D_n N_n(hb) = 0 (17.1.13)$$

si è cioè posto $E_n = C_n$ e $F_n = D_n$.

Per C_n e D_n si assumono valori tutti nulli tranne per un particolare valore m per cui si ha:

$$C_m J_m(ha) + D_m N_m(ha) = 0 (17.1.15)$$

$$C_m J_m(hb) + D_m N_m(hb) = 0 (17.1.16)$$

Soluzione per C_m e D_m non nulli esiste solo se

$$J_m(ha)N_m(hb) - J_m(hb)N_m(ha) = 0 (17.1.17)$$

Questa equazione è soddisfatta solo per un discreto set di valori di h.

Posto
$$u = ha$$
 e tenendo conto che $hb = \frac{b}{a}ha = \frac{b}{a}u = \alpha u$ si ha
 $J_m(u)N_m(\alpha u) - J_m(\alpha u)N_m(u) = 0$
(17.1.18)

Le radici di questa equazione sono date in alcuni testi contenenti tavole di funzioni, per esempio - Handbook of mathematical functions - edited by Abramowitz p.415 -

Questo contiene soltanto le soluzioni per m = 0 e m = 1 che comunque sono sufficienti per capire l'andamento delle frequenze di cut-off.

Per un dato valore di α il più piccolo valore di u_{mr} avviene per m = 0; questo dà la più piccola frequenza di cut-off per questi modi.

Per $\alpha \longrightarrow \infty$ significa $b \longrightarrow \infty$ quindi $u_{mr} \longrightarrow 0$, cioè $h \longrightarrow 0$, cioè la propagazione si comporta come se avvenisse nello spazio libero.

α	α^{-1}	u_{01}	u_{02}	u_{03}	u_{04}	u_{05}
1.25	0.80	12.55847	25.12877	37.69646	50.26349	62.83026
$1.\overline{6}$	0.60	4.69706	9.41690	14.13189	18.84558	23.55876
2.5	0.40	2.07322	4.17730	6.27537	8.37167	10.46723
5	0.20	0.76319	1.55710	2.34641	3.13403	3.92084
10	0.1	0.33139	0.68576	1.03774	1.38864	1.73896
12.5	0.08	0.25732	0.53485	0.81055	1.08536	1.35969
$16.\overline{6}$	0.06	0.18699	0.39079	0.59334	0.79522	0.99673
25	0.04	0.12038	0.25340	0.38570	0.51759	0.64923
50	0.02	0.05768	0.12272	0.18751	0.25214	0.31666
∞	0	0	0	0	0	0

 $r^{\underline{m}a}$ radice dell'equazione $J_0(u)N_0(\alpha u) - N_0(u)J_0(\alpha u) = 0$ dove u = ha e $\alpha = b/a$ è un dato del problema.

α	α^{-1}	u_{11}	u_{12}	u_{13}	u_{14}	u_{15}
1.25	0.80	12.59004	25.14465	37.70706	50.27145	62.83662
$1.\overline{6}$	0.60	4.75805	9.44837	14.15300	18.86146	23.57148
2.5	0.40	2.15647	4.22309	6.30658	8.39528	10.48619
5	0.20	0.84715	1.61108	2.38532	3.16421	3.94541
10	0.1	0.39409	0.73306	1.07483	1.41886	1.76433
12.5	0.08	0.31223	0.57816	0.84552	1.11441	1.38440
$16.\overline{6}$	0.06	0.23235	0.42843	0.62483	0.82207	1.02001
25	0.04	0.15400	0.28296	0.41157	0.54044	0.66961
50	0.02	0.07672	0.14062	0.20409	0.26752	0.33097
∞	0	0	0	0	0	0

 $r^{\underline{m}a}$ radice dell'equazione $J_1(u)N_1(\alpha u) - N_1(u)J_1(\alpha u) = 0$ dove u = ha e $\alpha = b/a$ è un dato del problema.

Vediamo, adesso, di trovare una formula analitica per i valori delle tabelle.

Per valori di u sufficientemente grandi (e nel nostro caso va abbastanza bene essendo α certamente non grande ma maggiore di 1) possiamo esprimere le funzioni $J_m(u)$, $J_m(\alpha u)$, $N_m(u)$, $N_m(\alpha u)$ con le loro forme asintotiche

$$J_m(u) \simeq \sqrt{\frac{2}{\pi u}} \cos\left(u - \frac{2m+1}{4}\pi\right)$$

$$N_m(u) \simeq \sqrt{\frac{2}{\pi u}} \sin\left(u - \frac{2m+1}{4}\pi\right)$$

$$|u| \gg 1, \ |u| \gg m$$
(17.1.19)

$$J_m(\alpha u) \simeq \sqrt{\frac{2}{\pi \alpha u}} \cos\left(\alpha u - \frac{2m+1}{4}\pi\right)$$
$$|\alpha u| \gg 1, \ |\alpha u| \gg m$$
(17.1.20)
$$N_m(\alpha u) \simeq \sqrt{\frac{2}{\pi \alpha u}} \sin\left(\alpha u - \frac{2m+1}{4}\pi\right)$$

Riscriviamo l'equazione da risolvere

$$J_m(u)N_m(\alpha u) - J_m(\alpha u)N_m(u) = 0$$
(17.1.18)

sostituendo le (17.1.19) e (17.1.20) si ha:

$$\cos\left(u - \frac{2m+1}{4}\pi\right)\sin\left(\alpha u - \frac{2m+1}{4}\pi\right) = \sin\left(u - \frac{2m+1}{4}\pi\right)\cos\left(\alpha u - \frac{2m+1}{4}\pi\right)$$
(17.1.21)
Posto $\beta = u - \frac{2m+1}{4}\pi$ e $\gamma = \alpha u - \frac{2m+1}{4}\pi$ la (17.1.21) ci restituisce
$$\cos\beta\sin\gamma - \sin\beta\cos\gamma = 0$$
(17.1.22)

o ciò che è lo stesso:

$$\sin(\gamma - \beta) = 0$$

cioè

 $\sin(\alpha u - u) = 0 \Longrightarrow \alpha u - u = r\pi \qquad r = 1, 2, 3 \cdots$ (17.1.23)

Posto u = ha e $\alpha = b/a$ nella (17.1.23), si ha:

$$hb - ha = r\pi$$

e finalmente

$$h = \frac{r\pi}{b-a} \tag{17.1.24}$$

La frequenza di cut-off, quindi è:

$$\nu_c = \frac{hc}{2\pi} = \frac{c}{2\pi} \frac{r\pi}{b-a} = \frac{c}{2} \frac{r}{b-a}$$
(17.1.25)

La lunghezza d'onda di cut-off è

$$\lambda_c = \frac{2(b-a)}{r} \tag{17.1.26}$$

N.B. Le formule valgono anche per modi alti (m > 1) purchè siano valide le approssimazioni.

La prima cosa importante è che se applichiamo le formule analitiche così approssimate, osserviamo che i valori sono molto simili a quelli delle tabelle; questo perchè pur essendo u piccolo per α grande αu è grande e quindi la $J(\alpha u)$ e la $N(\alpha u)$ approssima bene anche se la J(u) e la N(u) approssima male. Si badi che la frequenza di cut-off analitica è indipendente dall'indice m cioè dall'ordine delle funzioni di Bessel. É chiaro quindi che hanno una validità più forte per m = 0.

Esempio

$$\begin{array}{l} a = 0.5 \, \mathrm{cm} \\ b = 0.8\bar{3} \, \mathrm{cm} \end{array} \Longrightarrow b - a = 0.\bar{3} \, \mathrm{cm} \quad \frac{b}{a} = \alpha = 1.\bar{6} \\ \hline \mathbf{MODO \ TM}_{01} \\ \end{array}$$

$$h_{(\mathrm{analitico})} = \frac{\pi}{0.\bar{3} \cdot 10^{-2}} = 9.4247 \cdot 10^2 \Longrightarrow \nu_{c(\mathrm{analitica})} = 45 \, GHz \\ ha_{(\mathrm{tabella})} = 4.69706 \Longrightarrow h_{(\mathrm{tabella})} = \frac{4.69706}{a} = 9.39412 \cdot 10^2 \Longrightarrow \nu_{c(\mathrm{tabella})} = 44.854 \, \mathrm{GHz} \end{array}$$

Da ciò si vede che, dimensionando opportunamente il cavo, tenendo anche conto dell'attenuazione, si possono sopprimere i modi TM.

Modi TE.

Per i modi TE si considera l'equazione (17.1.1) riferita ad H_z con le condizioni al contorno

$$\frac{\partial H_z}{\partial \rho} = 0 \quad \text{per } \rho = a \neq \rho = b \tag{17.1.27}$$

questo porta al sistema:

$$C_m J'_m(ha) + D_m N'_m(ha) = 0 (17.1.28)$$

$$C_m J'_m(hb) + D_m N'_m(hb) = 0 (17.1.29)$$

Posto al solito u = ha e $hb = \alpha u \operatorname{con} \alpha = b/a$ il sistema ammette soluzioni se

$$J'_{m}(u)N'_{m}(\alpha u) - J'_{m}(\alpha u)N'_{m}(u) = 0$$
(17.1.30)

Per m = 0 si ha la relazione $J'_0(u) = -J_1(u)$ e lo stesso per la funzione di Neumann quindi i modi TE_{0r} si ottengono risolvendo la

$$J_1(u)N_1(\alpha u) - J_1(\alpha u)N_1(u) = 0$$
(17.1.31)

Da quanto detto prima e dalla tabella questi modi hanno frequenza di cut-off maggiore dei modi TM_{0r} quindi possono più facilmente essere soppressi.

Fine del Cap.17